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Abstract 
Color quality can be measured two ways. The first is target 

based where color-difference statistics are reported comparing 
image data with measurement-based colorimetric data. The second 
is based on measuring the camera sensor’s spectral sensitivities and 
calculating their similarity to a standard observer, for example, µ-
factor. A computational experiment was performed where synthetic 
images of a variety of targets were rendered for four camera systems 
having µ-factors of 0.79, 0.88, 0.94, and 0.99. Each camera was 
profiled using the same target. Although profile color accuracy was 
acceptable for all the cameras, this did not predict the color 
accuracy for independent targets. µ-factor was a better predictor of 
color quality and its use is recommended when evaluating cameras 
for cultural heritage applications. 

Introduction 
Historically, building camera profiles was similar to creating 

display profiles where there was a linear component (e.g., RGB to 
XYZ using a matrix transformation) and three gamma curves. This 
was concatenated with an encoding space such as sRGB. For most 
cameras, the color quality was barely acceptable and as a 
consequence, visual editing was required. A recent development is 
the use of a multi-dimensional look-up table (MLUT) and 
interpolation for camera profiling. This has long been used when 
profiling printers because of the complexity of modeling the optical 
behavior of ink on paper and the need to transform three dimensions 
into four or more dimensions, e.g., RGB to CMYK or CMYKRGB. 
There is a unique MLUT for each ink and substrate, based on 
printing and measuring over 1,500 color patches. When applying 
this approach to camera profiling, there is usually a single MLUT, 
based on imaging a color target. Ideally, the target should have a 
large number of colors uniformly distributed in CIELAB, a large 
color gamut, and use colorants similar to those of the materials to be 
imaged. The most common target used to profile cameras is the X-
rite ColorChecker Digital SG, having 140 patches that are poorly 
distributed in CIELAB and made using colorants that often do not 
represent the materials. Depending on the camera and materials, the 
MLUT may or may not produce high color-quality images. 

A property of cameras often overlooked by photographers is 
the spectral sensitivities of the camera sensor. These sensitivities 
determine whether the camera records color similar to a color-
normal standard observer. The reason for being overlooked is that 
manufacturers do not provide spectral sensitivity data or a metric 
that quantifies similarity to a standard observer. A commonly-used 
metric was derived by Vora and Trussel [1], known as µ-factor (“mu 
factor”). This metric is based on seminal research by Neugebauer 
[2] and is similar to a correlation coefficient. A µ-factor of unity 
means the camera records color identically to a standard observer. 
µ-factor has the advantage of not requiring a target and profile.  

The purpose of this paper is to demonstrate the usefulness of 
µ-factor in predicting color quality and the uselessness of reporting 
the CIEDE2000 statistics of the profiling target for the same task. 

Experimental 
Calculating µ-factor requires the measurement of a camera 

sensor’s spectral sensitivity. Image Engineering has a database of 
many cameras [3]. µ-factor was calculated for each camera using 
the spectral radiance of strobe lighting with a correlated color 
temperature of 5659K [4] as the studio lighting and D50 as the 
standard illuminant. A RGB trilinear-array scan back was added to 
the database. Values ranged between 0.94 and 0.79. Three cameras 
were selected: the highest µ-factor of 0.94, an intermediate µ-factor 
of 0.88, and the lowest µ-factor of 0.79, labelled as Camera H, M, 
and L, respectively (“high,” “medium,” and “low”). The spectral 
sensitivities are plotted in Figure 1. Camera L was the scan back. 

 

 
Figure 1. I Normalized spectral sensitivities of Cameras H, M, and L. 
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Sixteen-bit spectral images were synthesized for four targets 
using their spectral reflectances: The X-rite ColorChecker Digital 
SG, the Avian Rochester DT Next Generation Target V2 [5], the 
Artist Paint Target [6], and the spectral database developed by the 
Illuminating Engineering Society for evaluating the color rendering 
of light sources [7]. (A neutral was added so there were 100 
patches.) Eighty-one images for each target were rendered, 
corresponding to 380 – 780 nm in 5 nm increment.  

Gamma-(1/2.4)-encoded images were synthesized from the 
spectral images, the camera spectral sensitivities, and the strobe 
spectral radiance. The 16-bit images were flat-fielded so that the 
perfect reflecting diffuser had a maximum signal of unity. One-over-
gamma encoding is common with large format cameras used in 
cultural heritage imaging. It is also good practice when building 
MLUT profiles because the camera signals and CIELAB have 
similar linearity. The synthetic image for Camera H is shown in 
Figure 2. The images for Cameras I and L appeared similar.  

 

 
Figure 2. Camera H camera-raw image. (Image converted to sRGB.) 

ColorBurst SpectraCore Camera Profile software was used to 
produce MLUT profiles for Cameras H, M, and L using the image 
and CIELAB data for D50 and the 1931 standard observer of the 
ColorChecker Digital SG. Each profile was assigned to each 
corresponding image in Photoshop. The images were converted to 
16-bit ProphotoRGB, also using Photoshop.  

A Bi-Color LED system is under development at Gray Sky 
Imaging where two images are captured, one for each LED. This 
approach has been named Dual-RGB by Berns and described in 
Reference 8. Camera H and the two LEDs were used to calculate 
two images, labelled as Camera D (“Dual-RGB”), shown in Figure 
3. This system resulted in a µ-factor of 0.99. Linear regression 
(pseudoinverse) was used to estimate a transformation matrix from 
(RGB)1 and (RGB)2 to XYZ using the ColorChecker Digital SG 
image and XYZ data. A single matrix was calculated by the 
concatenation of the XYZ matrix and the ProPhotoRGB XYZ to 
linear-RGB matrix. The concatenated matrix followed by gamma-
(1/1.8)-encoding resulted in a single ProPhotoRGB image, shown in 
Figure 4. 

 
 

 
Figure 3. Camera D camera-raw images. (Image converted to sRGB.) 

 
Figure 4. Camera D color-managed image. (Image converted to sRGB.) 
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The average RGB was recorded of the central 40% of each 
color patch for each camera and converted to CIELAB (D50, 1931 
standard observer). CIEDE2000 total color differences were 
calculated between reference and image data.  

Results and Discussion 
Color-difference statistics and µ-factors are listed in Table I. 
Comparing the µ-factors and normalized spectral sensitivities 
shown in Figure 1, the spectral sensitivity widths decreased as µ-
factor reduced. In addition, Camera L has its red channel’s peak 
wavelength shifted to longer wavelengths. Camera L is the scan 
back that uses a trilinear array. These types of sensors were not 
designed for scene-referred imaging.  Rather, they were designed to 
measure color film density, resulting in narrow spectral sensitivities 
centered near the peak spectral densities of cyan, magenta, and 
yellow photographic dyes. Based on µ-factor alone, Camera D 
should have the best color quality and Camera L should have the 
worst. 

Table I. µ-factor and CIEDE2000 total color difference statistics 
(average, 90th percentile, maximum) for each listed camera and 
target (CCSG = ColorChecker Digital SG, APT = Artist Paint 
Target, NGT = DT Next Generation Target V2, IES = Illuminating 
Engineering Society TM 130 Spectral Dataset). (The profiling 
target, CCSG, is shown in italics.) 

Camera µ Target 
CIEDE2000 

Ave 90th P Max 

D 0.99 

CCSG 0.1 0.2 0.4 

APT 0.2 0.3 0.5 

NGT 0.1 0.3 0.5 

IES 0.1 0.2 0.6 

Average 0.1 0.3 0.5 

H 0.94 

CCSG 0.2 0.3 1.2 

APT 0.6 1.2 1.5 

NGT 0.6 1.2 2.5 

IES 0.9 1.7 3.0 

Average 0.6 1.1 2.1 

M 0.88 

CCSG 0.2 0.4 1.6 

APT 0.6 1.4 1.7 

NGT 0.7 1.5 4.4 

IES 1.2 2.6 4.7 

Average 0.7 1.5 3.1 

L 0.79 

CCSG 0.3 0.7 2.4 

APT 1.7 3.7 8.4 

NGT 1.6 3.7 7.3 

IES 3.2 7.6 12.9 

Average 1.7 3.9 7.8 
 

The profiling software produced excellent results for Cameras 
H, M, and L where the ColorChecker Digital SG calibration target 

had average color accuracy of 0.2 – 0.3 CIEDE2000 (gray-shaded 
cells of Table I). The Bi-Color LED system, Camera D, had the 
smallest average at 0.1. All four cameras well exceed FADGI 4 Star 
color-accuracy requirements for paintings and other two-
dimensional art where the average CIEDE2000 must be less than 2 
[9]. The four images looked nearly identical when viewed on a color 
managed display. 

The color-difference statistics for the average of the three 
independent targets (APT, NGT, and IES) for each camera system 
as a function of µ-factor are plotted in Figure 5. Color-quality 
differences between cameras become apparent when independent 
data are evaluated. Performance was correlated with µ-factor. The 
mean, 90th percentile, and maximum color differences increased as 
µ-factor decreased. Also, the range of values increased appreciably 
as µ-factor decreased. Camera D ranged from 0.1 – 0.5 CIEDE2000; 
camera L ranged from 1.7 – 7.8 CIEDE2000. 

 

 
Figure 5. Statistic averages for the independent targets as a function of µ-
factor for each listed camera system. 

 
Figure 6. Color-managed Artist Paint Target images for each listed camera. 
(Image converted to sRGB.) 

Images of the Artist Paint Target are shown in Figure 6. This 
target is difficult to image accurately because it contains ultramarine 
(row 2, column 1) and cobalt blue (row 2, column 2). Using Camera 
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D as the reference camera, having 0.2 and 0.3 CIEDE2000 for 
ultramarine and cobalt, there are clear visual differences. The scan 
back’s shifted red spectral sensitivity resulted is large errors of 3.7 
and 8.4 CIEDE2000 for these blue colorants. 

Conclusions 
A camera’s color quality cannot be predicted from the color 

accuracy of the profiling target. All four cameras had excellent 
color-difference statistics for the profiling target, far exceeding 
FADGI 4 Star. Based on this metric, all the cameras should have 
outstanding performance in practice, represented by the validation 
targets. They do not. Only Camera D would not require visual 
editing, having a maximum color error of 0.6 CIEDE2000 for all the 
target samples. Camera L would require extensive visual editing. 
This result calls into question the FADGI Star rating for quantifying 
color accuracy.  

A camera’s color quality can be predicted from its similarity to 
color matching functions, quantified by µ-factor. The color accuracy 
of all the targets improved with an increase in µ-factor. Furthermore, 
the range of color differences reduced as µ-factor approached unity. 
Having a camera with a high µ-factor means that the camera will 
have excellent color quality, irrespective of the profiling target and 
type of profile. It is unfortunate that camera manufacturers do not 
report a metric that measures similarity to color matching functions. 
We are left with measuring spectral sensitivity ourselves or finding 
a colleague or company willing to do so. Perhaps in the future, a 
metric such as µ-factor can be added to objective measures of 
defining color quality.  

 A reasonable question is why don’t cameras have µ-
factors of unity? Briefly, there is a tradeoff between color and spatial 
image quality [10]. For most applications, high spatial quality is 
more desirable than high color quality. Secondly, cameras are 
designed to produce beautiful images, not color-accurate images. 
For cultural-heritage imaging, we are using cameras not designed 
for this purpose. The only way to improve color accuracy that is 
target independent is the use of multi-spectral or hyperspectral 
camera systems. Camera H was used as a multi-spectral camera 
(Camera D) by using a bi-color source optimized for high color 
accuracy. 
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