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Abstract

Conventional color imaging has three channels—R, G, and B.
In multispectral imaging within the visible spectrum, the number of
channels increases in order to improve color accuracy and estimate
spectral reflectance factor. Image quality criteria important in
multispectral imaging include colorimetric accuracy, sharpness,
registration, and low noise. The color transformation matrix,
connecting camera signals with CIE tristimulus values, affects color
accuracy and the visibility of image noise and misregistration when
the multiple channels are combined to a color-managed image.
When the final goal is a color-accurate image for one set of
illuminating and viewing conditions, the color transformation is
often derived directly using nonlinear optimization minimizing the
average color difference between spectrophotometer- and camera-
based colorimetric coordinates. Optimization requires starting
values and least squares minimizing spectral or tristimulus RMS
error is typically used. Although it is effective for achieving
convergence, the optimized matrix can result in a large reduction in
image quality caused by noise propagation via the color
transformation matrix. These concepts are reviewed.

Introduction

Imaging cultural heritage such as paintings, drawings, and
sculptures has been in practice over 100 years. This includes silver
halide photography, video, and current digital technologies.
Common wavelength regions are UV, visible, infrared, and X-ray.
This paper is limited to the visible spectrum using digital sensors.
Color cameras sample the visible spectrum in three regions, red,
green, and blue or RGB. This is based on the trichromatic nature of
color vision. Maxwell produced one of the earliest color imaging
systems to prove the existence of trichromacy [1]. Ideally, the
spectral sensitivities of RGB cameras are linear transformations of
the eye’s cone fundamentals, known as meeting the Luther-Ives (or
Maxwell-Ives) condition [2, 3]. This results in perfect color
accuracy for a single illuminant and a specific observer (e.g., the
CIE 1931 standard observer). In practice, RGB sensors do not meet
this condition because dyes cannot be manufactured with specific
spectral absorptions and color accuracy is not the only quality
criterion, described in detail below. An RGB system can be thought
of as a three-channel system.

One method to improve color accuracy is to produce spectral
images and calculate color-managed RGB from the spectra,
equivalent to a spectrophotometer designed for color measurement.
Estimating spectral reflectance factor requires increasing the
number of channels. (Three sensors can only be used to estimate
spectra accurately for materials colored with three or fewer
colorants. See for example reference [4].) Increasing the number of
channels can be accomplished by replacing RGB dyes of an area
array sensor with four or more dyes. An RGB camera can be
combined with multiple filters, lights, or both. For example, two
different colored lights result in six channels. A panchromatic
(“monochrome™) sensor can be used with a multiplicity of colored
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filters, colored lights, or both. Finally, a panchromatic sensor can be
used with a dispersing element such as a diffraction grating. When
the number of channels is fewer than the number of reported
wavelengths in a spectrophotometer, the term “multispectral” is
used. When the number is much greater, the term “hyperspectral” is
used. The ICC color management file format iccMAX [5] was
designed for spectral data.

A second method to improve color accuracy is to increase the
number of channels and derive a transformation where colorimetric
coordinates are estimated directly from multispectral camera
signals. This fits into the current ICC V2 and V4 file formats.

These two methods can lead to different transformations
depending on the spectral sensitivities of the camera and the method
of estimating the transformation. One consequence of this difference
is a difference in spatial image quality. The purpose of this paper is
to review the degradation in image quality caused by the
multispectral color transformation.

Color Processing Pipeline

The processing pipeline in multispectral imaging, abbreviated
“MSI”, is transforming from raw camera signals to estimated
spectral reflectance factor, [gl,shown in Eq.1 for j wavelengths, i

colors, and n camera channels:

R=M_c
5 M
where
R, - R, a4, 4,
R= 5MS = s
R .o R a. a.
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Cl,l Cl,i
c= .
C | C
n, n,

a are matrix coefficients, and C define radiometrically-linear camera
signals that have been, successively, dark-current subtracted,
corrected for spatial inhomogeneities in the sensor, lens, and
lighting, and normalized to a reference white. (The normalization
depends on the desired amount of “headroom” for specular
highlights, typically around 95% of the maximum signal.)

A number of approaches have been used to determine the
spectral transformation matrix [6] including a Moore-Penrose
pseudoinverse, Wiener filtering, principal component analysis, and
singular value decomposition, all using color targets as training data.
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These are linear operations because the large number of matrix
coefficients—the number of camera channels multiplied by the
number of reference wavelengths—make convergence difficult
using nonlinear optimization. The matrix shown in Eq. 1 results
from a pseudoinverse, Eq. 2:

.
M, =c'R, 2
where R is a matrix of reference spectral reflectance factor
measurements and the superscript + indicates the pseudoinverse.
Estimated tristimulus values are calculated from the spectral data,
shown in Eq. 3:

=T SR,
xyz
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S, defines the spectral power distribution of the reference

illuminant, and define the color matching functions of the

XYz
reference observer.

Tristimulus values are usually transformed to various color-
managed RGB encodings. When processing images, the
transformation from camera signals to color-managed linear RGB is
a single concatenated matrix, shown in Eq. 4:

tRGB = Mconcatenated ¢ %
where
_ -1
concatenated MRGB TxyzSMS ’
X X X, R - R
r g 1 i
M, =| Y. Yg Y, |te=| G - G
zZ Z Z B - B
r g b 1 i

For clarity, normalization by the luminance factor (Y) of the
perfect reflecting diffuser is not shown when calculating tristimulus
values. This is accomplished by dividing Txy.S by the sum of row
two of Tyy,S. The last steps are gamma correction and attaching an
ICC profile.

The direct transformation from camera signals to tristimulus
values is shown in Eq. 5:
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Exyz = Mrc, (5)
where

Ay, = ay,
MT = 4y ay,

ay, 4y,

Nonlinear optimization is often used to estimate the transformation
coefficients a comprising Mr where the average total color
difference between spectrophotometer- and camera-based CIELAB
values are minimized. For cameras that do not meet the Luther-Ives
condition, minimizing total color difference improves color
accuracy compared with estimating spectral reflectance factor (e.g.,
Eqgs. 2 and 3).

Multispectral Image Quality

There are many ways to quantify image quality using both
visual and computational techniques [7, 8]. Computational
techniques measure image properties that, in turn, are transformed
to metrics correlating with visual assessment. Quality criteria
important in MSI include color accuracy, sharpness, registration,
and low noise. Sharpness, registration and noise can be evaluated
for each channel. Metrics that predict visual assessment are based
on a color-managed image.

Color accuracy is quantified using calibration and verification
targets, ideally having spectral properties similar to the artwork.
There is an underlying assumption that high color accuracy for a
calibration target leads to high color accuracy for the artwork.
Metrics include the average, 90" percentile, and maximum of the
total color differences of the color patches. Neutral samples should
be analyzed separately to indicate neutral tracking and white
balance. An example analysis is described in reference [9].

The recommended total color difference formula is
CIEDE2000 [10] with the positional function, Si, equal to unity
[11]. CIEDE2000 is known as a weighted color-difference formula
[12], shown in Eq. 5:

2 2 2
AEOO:\/(AL ] +[AC ] +[AH ] +RT[AC J(AH J
kLSL kCSC k[ISII kCSC kIISII (5)

Positional functions, S, improve CIELAB’s predictions of perceived
color differences in the range of 0.5-5.0 AE',- Reciprocal weighting

factors, k, are used when a specific application requires a different
relative weighting of lightness, chroma, and hue differences. For
imaging, it may be beneficial to have k¢ = 2 since lightness and hue
accuracy are often more critical than chroma accuracy.
Multispectral cameras have spectral sensitivities with narrower
bandwidth across a greater wavelength range than an RGB camera.
Lenses used for MSI must have minimal chromatic aberration
(apochromatic) so that focusing is only required at a single channel.
“Apochromatic” lenses designed for RGB imaging do not achieve
this requirement [13]. A single focus results in both blurriness and
image shifting. Blurriness is reduced by refocusing for each channel.
The differences in focal length when refocusing lead to different
magnification. Image shifting and magnification differences for the
multiple channels are minimized by image registration. The channel
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with spectral sensitivity most similar to the luminous efficiency
function of the reference observer is used as the reference image.

Image sharpness and registration are quantified using slanted-
edge targets in both the horizontal and vertical directions and in
different locations across the image [14—16]. The spatial frequency
response, SFR, of the slanted edge can be used to evaluate the focus
of each channel. Perceived sharpness is evaluated using a color
image. The image should be color managed (i.e., have an attached
ICC profile) in order to calculate the SFR of a luminance channel,
used to calculate acutance [8] that is correlated with perceived
sharpness. Misregistration is defined as a shift in a line fit to the
slanted edge compared with a reference channel. There is not a
commonly used perceptual metric of misregistration.

Image noise results in a speckled or grainy appearance, in
essence, unwanted variability in image regions known to be spatially
uniform. In general, it is caused by properties of the sensor,
electronics, and image processing. The standard deviation of neutral
patches can be used as a measure of variability for each channel [16,
17]. Noise visibility in the color-managed image depends on the
display, viewing distance, magnification, and image content. An
alternative approach to quantify noise is to use all the patches of a
color target. The total color difference between each pixel in a patch
and the patch average is first calculated. These color differences are
averaged, known as a mean-color-difference-to-the-mean, MCDM
[12]. When using CIEDE2000, it is recommended that S; = 1 and
kc = kn = 2. This reduces the importance of chroma and hue noise
compared with lightness noise, which is more visible. The statistics
of these MCDMs are a measure of image noise. The critical values
would be determined by viewing the image on a display under
standardized magnification, viewing distance, display primaries and
peak luminance.

The color transformation, (T,,:SMs) or My, is another source
of noise. Burns and Berns used multivariate error-propagation
analysis to define noise in CIELAB units attributable to
spectrophotometric and colorimetric measurement uncertainty [18].
These transformations were used to predict image noise resulting
from seven-channel MSI [19]. Kuniba and Berns used the Burns and
Berns research to define a noise parameter, VN, that was used to
evaluate photon shot noise in image sensors [20] and the tradeoffs
between color accuracy and image noise when designing color
filters for digital camera sensors [21, 22]. The noise parameter is
given in Eq. 6:

v , (6)

(M*N)zz[%jz(wazﬁ val),
2
(Aa;,)zz %) [(all—a21)2+(a1’2—a2’2)2+ +(al’" aZn)z},
2
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Y23
= yv
Y=184 (L =50),
Y, =100,
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and where the matrix row-sums are rescaled to unity before the
calculation. Equation 6 is calculated for a medium gray sample
under illuminant E (equal-energy spectrum). At L* = 50, CIELAB
and CIEDE2000 total color differences are identical. This is the
gray-world assumption where all scene elements for all captured
images integrate to a medium gray. Color transformation noise can
also be calculated for each patch of a color target and the statistics
analyzed. Achromatic noise is more visible than chromatic noise and
a weighted color difference formula can be used, shown in Eq. 7
where the reciprocal weight, &, is greater than unity:

2 2

Aajv N Ab;/
k k

N,

(l:k:k)

= (AL )2 +
(N

Simulation

For the aims of this paper, camera signals and image rendering
were calculated rather than experiment based.

Imai, Berns and collaborators [23-27] developed a two-filter
MSI system using a Sinar 54 camera (22MP Kodak KAF-sensor
22000CE with its blue-green filter replaced with clear optical glass,
Sinar P3 body, Sinaron apochromatic lens, and Sinar custom two-
filter slider). Following extensive computations and one prototype,
the final filters were BG39 (cyan) and GG475 (yellow), each glued
with a visible bandpass filter. The camera could be used for both
RGB imaging (with the cyan filter) and MSI. The normalized
spectral sensitivities are plotted in Figure 1. These spectral
sensitivities were used to calculate camera signals using the spectral
irradiance of a Broncolor Pulso F4 with UVE protection dome
Xenon strobe [28].

Three targets were used. The Xrite ColorChecker® Digital SG
was used to derive transformation matrices. The Avian Rochester
Next Generation Target [29] was used to evaluate color accuracy.
Each patch’s spectral reflectance factor was based on
spectrophotometric measurements using 45°a/0° geometry.
Colorimetric data were calculated for the CIE 1931 standard
observer and illuminant D65.The third target was the MetaCow
spectral image [30]. This is a 4200 x 6000 pixels computer-graphics
rendered spectral image where the back half of a cow has the
spectral reflectance factor of a patch from a Xrite ColorChecker®
Classic while the front half is a theoretical metamer for illuminant
D65 and the 1931 standard observer. The metamers’ spectra were
derived using published metameric blacks [31]. These metameric
spectra result in extreme metamerism and as a consequence, the
MetaCow is an excellent visualization target. In fact, metameric
pairs are an alternate verification target, having high sensitivity to
small differences in spectral sensitivity [32].

Equation 8 was used to calculate camera signals for each patch
of the two targets and as image data for the MetaCow:

c=T SR, ®)

where
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and where l//j defines the spectral sensitivity of a multi-spectral

channel, as shown in Figure 1. The spectral sensitivities were
rescaled such that a perfect reflecting diffuser had camera signals of
unity.
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Figure 1. Peak-height normalized spectral sensitivities of the multi-spectral
camera used in this paper. Solid lines correspond to the cyan filter and dashed
lines correspond to the yellow filter.

The Matlab function pinv, a Moore-Penrose pseudoinverse,
was used to derive My (Eq. 2). Because the transformation from
spectral reflectance factor to tristimulus values is linear, using a
pseudoinverse to derive My would result in the same transformation.

A better solution for M7 can be found using, for example, the
Matlab nonlinear optimization function fininunc, to minimize the
average AEUO(SL=1)uSing the ColorChecker Digital SG as the

calibration target. This function is a variant of the Newton-Raphson
method and as a result, convergence can occur at a local minimum
rather than the true minimum. Accordingly, starting values are
critical. Two sets of starting values were used. The first was the
result from the pseudoinverse. The second set was a diagonal matrix
for the cyan image with coefficients of 1, 1, and 2, and null values
for the remaining coefficients. This matrix compensates for the high
correlation between cyan and yellow filtered camera data, a result
of the specific spectral sensitivities shown in figure 1. The
coefficient of 2 led to a result closer to the true minimum than 1. (A
value of 1 converged to a local minimum.)

The yellow-filtered RGB MetaCow image was manipulated in
two ways. First, the image was shifted by one pixel in each direction.
Second, a very small amount of Gaussian noise was added to the
image. Thus, there were three different yellow-filtered images. Each
optimal matrix was concatenated with the sSRGB tristimulus matrix
and used to calculate linear RGB images. These, in turn, were
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nonlinearly encoded and output as 16-bit SRGB encoded TIFF
images.

Results and Discussion

The initial and optimized matrix coefficients, total-color-difference
statistics for the Next Generation Target verification target, and the
transformation noise for the initial and optimized matrices are
shown in Tables I and II. The pseudo-inverse initial and optimized
matrix coefficients did not change (at one significant figure). The
average total color difference was 0.4, likely the minimum value.
The six channels are nearly a linear transformation of color
matching functions with a p-factor of 0.96 [33]. (Perfect
transformability has a p=1.) As such, minimizing tristimulus values
RMS error led to a minimum average total color difference because
RMS error was small. However, the pseudo-inverse resulted in a
very large color-transformation noise of 27.4 (equivalent to
27.4AE"p)! The a* noise was particularly large. CIELAB " is
calculated from rows one and two of the transformation matrix. The
two green signals, one from each filter, result in very similar—but
not identical— signals for the calibration target patches due to their
very similar spectral sensitivities. The coefficients —4.6 and 4.7 in
row one, having opposite sign, led to a small net contribution
estimating tristimulus X, but a large contribution to transformation
noise. Changing these two coefficients to 0.0 and 0.1 reduces the
color-transformation noise to 11.5. This oscillation of the green
channels also occurred in row three, but the coefficients were much
smaller: —0.6 and 0.7; -0.2 and 0.2.

Table I. Nonlinear optimization initial and final matrices.

00 -46 09 -01 47 00
02 -08 01 00 17 =02
-02 -0.6 21 02 07 -11

Pseudoinverse
initial and final matrix

Specific coefficients 100000
initial matrix 010000
002000
Specific coefficients 06 -0 02 04 -0.1 00
final matrix 05 07 02 02 -02 00
00 -02 18 01 -01 —05

The diagonal coefficients matrix resulted in a very large
average total color difference of 22.8 and color-transformation noise
of 7.9. Following optimization, the average total color difference
reduced to 0.5 and color-transformation noise reduced to 6.7. None
of the matrix coefficients had large values and there was not sign
oscillation for the green channels. The total color differences of each
approach were not statistically significantly different at a 95%
confidence interval based on the Student-T test.

The final matrices listed in Table I (with floating point
precision) were used to render the MetaCow images, shown in
Figure 2. Neither matrix resulted in perfect color accuracy. An
additional source of error was the spectral differences between a
Xenon strobe and illuminant D65. The magnitude and direction of
difference were cow dependent.

The row four, column four MetaCow is shown in Figure 3. This
cow is representative of all the other cows. The pseudoinverse-
starting-values transformation resulted in a rendering where the
pixel shift was quite evident. There is a red outline and the specular
highlights vary from cyan to white to red. The addition of noise was
also evident where there is appreciable red speckle. The specific-
starting-values transformation did not have visible image shifting
and the speckle was minor.
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Lol I Solr mats ranlornation epimization feute Coer | Following optimization
Next Generation Target. Average AEOO(SL - 1) 0.4 05
Metric :15‘,(:::: ] ggzgfiifti:‘i:ents 90" percentie AEOO(SL - 1) 07 10
Before Optimization Maximum AEOO(SL = 1) 2.0 24
Average Ag (s, =1) 0.4 228 AL, Noise 22 1.1
AL, noise 22 12 Aa, noise 26.9 4.9
Ad), noise 26.9 73 Ab,, hoise 47 44
Ab, noise 47 2.9 N 27.4 6.7
N 27.4 7.9

MetaCow: Created by the RIT M
Figure 2. (Top) Rendered MetaCow using the final pseudoinverse-based matrix. (Bottom) Rendered MetaCow using the final specific-coefficient-based matrix.
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Moore-Penrose Pseudo Inverse Specific Coefficients

Figure 3. Row four and column four MetaCow with the yellow image either unchanged (top), shifted by a single pixel in both directions (middle), or Gaussian noise
added (bottom). The left column used the final matrix from the pseudoinverse starting values. The right column used the final matrix from the specific coefficients
starting values.
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Conclusions

The current purpose of using MSI for documentation of
cultural heritage is to improve color accuracy. It is well
understood that adding channels improves color accuracy.
However, this may come at a cost of reduced spatial image
quality. The causes can be optical and computational. This paper
has reviewed the image quality degradation caused by the color
transformation linking camera signals with spectral reflectance
factor or tristimulus values. This was demonstrated using
simulations of a six-channel MSI system using an RGB sensor
and cyan and yellow filters where the visibility of spatial
degradation in the yellow-filtered image depended on the noise
properties of the color transformation matrix. For this particular
imaging system, a Moore-Penrose pseudoinverse was a poor
choice for starting values when estimating a color transformation
using optimization. Spatial image quality was improved by using
a specific set of starting values. These were selected by analyzing
the channel spectral sensitivities and recognizing that the green
channel was largely unaffected by the choice of filters.

Colored LED illumination and a panchromatic sensor are
sometimes used to build MSI systems. There are about 40 colored
LEDs within the visible spectrum. When selecting specific LEDs,
color transformation noise is equally important to color and
spectral accuracy.
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