

Creating artificial ground-truth data for document image page
segmentation
Oliver Paetzel and Hauke Bluhm, both intranda GmbH (Göttingen, Germany)

Abstract
We propose a framework that can be used to create

artificial ground-truth data for document images. The
resulting data can then be used to train machine-learning
systems to perform page segmentation tasks. The main focus
of this system is on images of historical documents. The
framework creates document images with headlines of
differing sizes, multiple column layouts, pictures and
decorative elements. To improve the resemblance with
historical document images, a set of backgrounds is created
manually by extracting background textures from real
historical documents. The fading and curling typical of old
manuscripts are also simulated.

Experiments with a neural network – trained on data
generated using the proposed framework and applied to real-
world images – show promising results with robust
segmentation of text and non-text image areas.

Evaluating Tesseract 4
OCR is a common procedure when creating large-scale

book digitization workflows in the open-source workflow
management system Goobi. The OCR process is usually fully
automated, i.e. without human involvement. In the past, this
step was performed using commercial software that we had to
purchase. Unfortunately, troubleshooting was often
problematic when errors occurred.

Figure 1. Cut-out from an uncropped book document image with a large
black frame around it..

When the first beta release of Tesseract 4 became
available, we evaluated it against the commercial solution.
For simple layouts with just one block of text, we found that
Tesseract delivered comparable and sometimes better results.
However, Tesseract was less effective when it came to
preprocessing document images with more complex layouts.
The preprocessing steps that caused problems were

binarization, page segmentation and, in some cases, line
segmentation.

Preprocessing document images
Tesseract’s preprocessing pipeline consists of two steps.

The first of these is to binarize the image using Otsu’s method
[1]. The second is to extract text lines, trying to ignore
ornaments and images (a hybrid task that also involves a
certain amount of page segmentation). Both parts of the
pipeline have proven to be error-prone using the materials that
we deal with in our day-to-day work. The binarization process
does not handle document images with large black borders
very well. The reason is that Otsu’s method uses the
histogram of the gray-scale image to determine a fixed
threshold for the whole image. The black border skews the
histogram. As a result, the threshold selected using Otsu's
method is too conservative, and faint characters are erased.

Figure 2. Example of an advertisement with an ornamental frame in which
Tesseract detects characters.

You can see an example in Figure 1. The text line
extraction process recognizes possible characters in
ornamental frames (see an example in Figure 2) and has
problems with skewed text lines and lines that are printed
with little or no margin (see Figure 3).

To make Tesseract more effective, we replace the whole
preprocessing pipeline with our own implementation. This can
be done by using the Tesseract API and only letting it
recognize text in previously computed bounding boxes that
represent the text lines in the image. Our preprocessing
pipeline consists of the usual steps but differs in the order of
those steps. We first segment the image into text blocks,
images and ornaments. Next, the text lines are extracted from
the text blocks, and, as the last step, the text lines are

© 2019 Society for Imaging Science and Technology

76 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

https://doi.org/10.2352/issn.2168-3204.2019.1.0.17

binarized. As convolutional neural networks have proven to
be efficient in image classification [2], [3], object detection
[4]–[6] and document image page segmentation [7]–[9], we
decided to use this approach for our page segmentation step.

Figure 3. Example of skewed lines which Tesseract’s text line extraction
algorithm handles badly. Note the horizontal red line.

The problem with training data
Although Oliveira et al. [7] and Schreiber et al. [8] have

shown that convolutional neural networks are effective in
segmenting document images, they did so using relatively
small training and evaluation sets with a total of 150 images
[10]. These are unlikely to be sufficiently representative of all
the data that is digitized in libraries today. As we are unable
to create this kind of data manually, we need a framework to
automatically generate document images with ground-truth
annotations. To mitigate the problem of an insufficiently
diverse training set, the framework needs to offer a very wide
range of possible layouts and also has to emulate the typical
features of historical documents, e.g. fading characters,
curling paper and vertically connected text lines.

The document image generator
The proposed application generates completely random

document images using two static resources. The background
textures and the pictures used in the layout come from a pool
that has to be manually created. We also need to configure
maximum values for the number of columns and the number
of pictures per page.

The actual process of generating document images is
divided into three phases: the decision phase, the layout phase
and the render phase. The decision phase randomly
determines some general layout specifications:

• Render an ornamental frame?
• Render separators between columns?
• Render a top margin for running titles?
• Render a bottom margin for footnotes?
• Render a page number?
• If a page number is rendered: page number position
• Number of columns
• Distance between columns
• Vertical text line distances
• Font size for body text line
• Font size for headings
• Text line skew angle
• Number of pictures to be rendered.

When these decisions have been made, the layout phase

begins. Some of these steps are only conditionally executed,
depending on the decisions made in the first phase. Also,
some decisions (e.g. picture size) have to be made in this
phase as the bounds for the picture size are only available

after the columns have been fitted. The steps in the layout
phase are:

• Reserve areas for the ornamental frame
• Reserve areas for the margins
• Fit column areas into the print space left
• Add pictures into the columns.

Figure 4. Example of a generated document image.

After the layout phase, all the ground-truth data has been
generated for the ornaments, pictures and text blocks. The last
step is the rendering phase, where pictures, ornaments and
text are added and filters applied to better emulate historical
documents. The rendering phase starts with a fully transparent
canvas and involves performing the following steps:
• Render the text on the blank canvas
• Skew the text lines
• Make some black text pixels more transparent
• Select random pictures and add them in the correct

position
• Add the background texture.

Figure 4 shows a document image generated using this
method.

Evaluation
For our method to be successful, we needed to show that

a neural network trained using only artificial data generalizes
well enough to work on real-world data as well.

77ARCHIVING 2019 FINAL PROGRAM AND PROCEEDINGS

We therefore created a total of three datasets. Two of
these were created using the software described above and
solely contained artificial data: the training set consisted of
1,000 artificial document images, the validation set 100. The
third set was the real-world set. The real-world set was made
up of 32 document images collected from German and
Austrian libraries. For the real-world set, the ground-truth
data was generated manually.

For all three sets, there were two kinds of ground-truth
data: bounding boxes for object detection and pixel-level
annotations for semantic segmentation. The classes of
bounding box were: text block, ornamental frame, and image.
The ground-truth data for the segmentation task looked a little
different. Here, every pixel in the image was assigned its own
label. The labels we used were background, image, frame, and
baseline. The baseline label was intended for use in textline
extraction. A baseline is the line that most characters touch
with the bottom of their bounding box, and some (e.g. “p” and
“g”) cut to the bottom. The baselines in our ground-truth data
were annotated with a 10-pixel-wide line.

Experiments with object detection
networks

The first experiments were performed with the Single-
Shot MultiBox Detector (SSD) and the bounding-box
annotations. SSD was used with vgg16 300x300 trained on
ImageNet as the base network and a learning rate of 0.001.
The training consisted of 150 epochs using the training
dataset. The results of the best model can be seen in tables 1
and 2.

Class mAP validation mAP real-world

Text block 0.99 0.58

Ornamental frame 1.00 1.00

Image 0.99 1.00

Average 0.99 0.86
Table 1: SSD results with IoU threshold=0.5

While the results look good for an IoU threshold of 0.5,
the results with a higher threshold of 0.8 highlight the
problem: The bounding boxes did not fit tightly around the
text blocks and ornamental frames. An example of this can
also be seen in Figure 5. The network was able to detect the
general position of text blocks and ornamental frames but
could not provide exact bounding boxes. This was not a
problem in terms of object detection, but for our specific
purpose we needed a clean segmentation of the page.

Class mAP validation mAP real-world

Text block 0.78 0.00

Ornamental
frame

1.00 0.00

Image 0.64 1.00

Average 0.81 0.33
Table 2: SSD results with IoU threshold=0.8

Figure 5. SSD results for a real-world image

Experiments with semantic segmentation
For semantic segmentation, we used the dhSegment

framework provided by Oliveira et al. [7]. The training
images were the same, but the ground-truth data was provided
on a pixel level, so each pixel had its own label.

We configured dhSegment to train for 50 epochs, with a
learning rate of 5e-5. The results for the validation and real-
world datasets can be seen in table 3. Although these results
don’t seem very promising, a look at the source images with
the labels overlaid explains the numbers. An example of a full
document image with overlaid predictions is shown in Figure
9.

 validation real-world

pixAcc 0.78 0.58

mIoU 0.27 0.19

IoU background 0.65 0.54

IoU images 0.29 0.21

IoU text 0.02 0.005

IoU frame 0.13 0.02
Table 3: Semantic segmentation results

78 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

One recurring error that led to poor accuracy values was
that page background pixels were misclassified as image
pixels. This error had two underlying causes: The first had to
do with the way we handled images that were rendered to the
page. To imitate copper engravings, we binarized a fraction of
the pictures before adding them to the document image.

Figure 6. Example of a binarized picture that led to skewed ground-truth
data

When rendering them on the background, we set every
white pixel in the rendered image to be fully opaque. With
pictures where there was a light blue sky and the horizon was
roughly in the middle of the image, this resulted in 50% fully
opaque pixels that were annotated as image in the ground-
truth data (see Figure 6 for an example).

The second cause for the background misclassification
was that the documents we generated for the training run all
had very little padding, so there were no examples during
training in which larger padding was part of the background.

Baseline extraction was not as successful as we had
hoped. The network labeled only parts of the baseline as such
and also some pixels at the top of the words’ bounding boxes.
The issue with parts at the top of lines labeled as baseline
might have been due to insufficient line spacing and an
excessively large annotation with 10-pixel thickness for the
baseline. However, we were pleased to note that text blocks
were not misclassified as images or ornamental frames in any
of our real-world images. Every text block was labeled as

background with the baseline annotation scheme that can be
seen in Figure 7.

Figure 7. Example of baseline extraction

The poor accuracy values obtained for frames using the
real-world data appeared to be a result of false positives. In
fact, they were not really false positives, but were just not
labeled by us, as they were not frames per se, but horizontal
rules. These were often annotated as ornamental frames by the
neural network. See Figure 8 for an example.

Figure 8. Horizontal rule that resulted in false positive “frame” pixels

Conclusions and future work
Our experiments showed that the SSD object detection

neural network is not particularly effective for document
image segmentation. However, the pixel-based classification
approach delivered promising results. The accuracy numbers
were not that good, but a look at the actual images reveals that
many of the issues were either a problem with the training
data or with evaluation data that was annotated without
sufficient care. Based on the results that the network yields
right now, it would be possible to extract non-textual elements
from a document image. The annotation of pictures would still
be a problem, as we have false positive areas where we would
expect the classification to be background pixel. We will
attempt to fix this with a higher padding for the whole print
space and a more careful choice of images that will be
binarized before they are added to the page.
Another problem that remains to be solved is that of baseline
extraction performance. This would be the biggest
improvement for Tesseract, as the current implementation has
problems with skewed lines. Looking forward, our main focus
will be on improving that part of the system. One possible
approach here could be to change the thickness of the ground-
truth lines, i.e. making them a little smaller. Another option,
instead of annotating the baseline, would be to mark the
whole character and connect all the characters in a line so that
the network could extract one connected component per line.

79ARCHIVING 2019 FINAL PROGRAM AND PROCEEDINGS

Figure 9. Example of a real-world document image annotated with the
pixel-based annotation approach. Red areas were classified as image,
green as ornamental frame, and blue as baseline.

References
[1] N. Otsu, “A Threshold Selection Method from Gray-Level

Histograms”, IEEE Transactions on Systems, Man, and
Cybernetics, vol. 9, no. 1, pp. 62–66, Jan. 1979.

[2] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”, arXiv:1704.04861
[cs], Apr. 2017.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition”, arXiv:1512.03385 [cs], Dec. 2015.

[4] J. Redmon and A. Farhadi, “YOLOv3: An Incremental
Improvement”, arXiv:1804.02767 [cs], Apr. 2018.

[5] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss
for Dense Object Detection”, arXiv:1708.02002 [cs], Aug. 2017.

[6] W. Liu et al., “SSD: Single Shot MultiBox Detector”, Computer
Vision – ECCV 2016, vol. 9905, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016,
pp. 21–37.

[7] S. A. Oliveira, B. Seguin, and F. Kaplan, “dhSegment: A generic
deep-learning approach for document segmentation”,
arXiv:1804.10371 [cs], Apr. 2018.

[8] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed,
“DeepDeSRT: Deep Learning for Detection and Structure
Recognition of Tables in Document Images”, 14th IAPR
International Conference on Document Analysis and Recognition
(ICDAR), 2017, vol. 01, pp. 1162–1167.

[9] M. Alberti, M. Seuret, V. Pondenkandath, R. Ingold, and M.
Liwicki, “Historical Document Image Segmentation with LDA-
Initialized Deep Neural Networks”, arXiv:1710.07363 [cs], pp.
95–100, 2017.

[10] F. Simistira, M. Seuret, N. Eichenberger, A. Garz, M. Liwicki, and
R. Ingold, “DIVA-HisDB: A Precisely Annotated Large Dataset
of Challenging Medieval Manuscripts”, 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR),
Shenzhen, China, 2016, pp. 471–476.

Author biography
Oliver Paetzel studied applied computer science in Göttingen

(Germany), specializing in digital humanities. He joined the German
software company intranda GmbH as a software developer in 2012
and concentrates on machine-learning technology and workflow
automation. As product manager, he is also responsible for the
development of the open-source workflow management tool Goobi.

Hauke Bluhm studied physics in Göttingen (Germany), with a

focus on complex systems. In 2018, he joined the German company
intranda GmbH as a software developer. His work includes OCR
system training and workflow automation with Goobi

.

80 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

