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Abstract 
We propose a framework that can be used to create 

artificial ground-truth data for document images. The 
resulting data can then be used to train machine-learning 
systems to perform page segmentation tasks. The main focus 
of this system is on images of historical documents. The 
framework creates document images with headlines of 
differing sizes, multiple column layouts, pictures and 
decorative elements. To improve the resemblance with 
historical document images, a set of backgrounds is created 
manually by extracting background textures from real 
historical documents. The fading and curling typical of old 
manuscripts are also simulated.  

Experiments with a neural network – trained on data 
generated using the proposed framework and applied to real-
world images – show promising results with robust 
segmentation of text and non-text image areas. 

Evaluating Tesseract 4 
OCR is a common  procedure when creating large-scale  

book digitization workflows in the open-source workflow 
management system Goobi. The OCR process is usually fully 
automated, i.e. without human involvement. In the past, this 
step was performed using commercial software that we had to 
purchase. Unfortunately, troubleshooting was often 
problematic when errors occurred.  

Figure 1. Cut-out from an uncropped book document image with a large 
black frame around it.. 

When the first beta release of Tesseract 4 became 
available, we evaluated it against the commercial solution. 
For simple layouts with just one block of text, we found that 
Tesseract delivered comparable and sometimes better results. 
However, Tesseract was less effective when it came to 
preprocessing document images with more complex layouts. 
The preprocessing steps that caused problems were 

binarization, page segmentation and, in some cases, line 
segmentation. 

Preprocessing document images 
Tesseract’s preprocessing pipeline consists of two steps. 

The first of these is to binarize the image using Otsu’s method 
[1]. The second is to extract text lines, trying to ignore 
ornaments and images (a hybrid task that also involves a 
certain amount of page segmentation). Both parts of the 
pipeline have proven to be error-prone using the materials that 
we deal with in our day-to-day work. The binarization process 
does not handle document images with large black borders 
very well. The reason is that Otsu’s method uses the 
histogram of the gray-scale image to determine a fixed 
threshold for the whole image. The black border skews the 
histogram. As a result, the threshold selected using Otsu's 
method is too conservative, and faint characters are erased.  

 

Figure 2. Example of an advertisement with an ornamental frame in which 
Tesseract detects characters. 

You can see an example in Figure 1. The text line 
extraction process recognizes possible characters in 
ornamental frames (see an example in Figure 2) and has 
problems with skewed text lines and lines that are printed 
with little or no margin (see Figure 3). 

To make Tesseract more effective, we replace the whole 
preprocessing pipeline with our own implementation. This can 
be done by using the Tesseract API and only letting it 
recognize text in previously computed bounding boxes that 
represent the text lines in the image. Our preprocessing 
pipeline consists of the usual steps but differs in the order of 
those steps. We first segment the image into text blocks, 
images and ornaments. Next, the text lines are extracted from 
the text blocks, and, as the last step, the text lines are 
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binarized. As convolutional neural networks have proven to 
be efficient in image classification [2], [3], object detection 
[4]–[6] and document image page segmentation [7]–[9], we 
decided to use this approach for our page segmentation step. 

 

Figure 3. Example of skewed lines which Tesseract’s text line extraction 
algorithm handles badly. Note the horizontal red line.  

The problem with training data 
Although Oliveira et al. [7] and Schreiber et al. [8] have 

shown that convolutional neural networks are effective in 
segmenting document images, they did so using relatively 
small training and evaluation sets with a total of 150 images 
[10]. These are unlikely to be sufficiently representative of all 
the data that is digitized in libraries today. As we are unable 
to create this kind of data manually, we need a framework to 
automatically generate document images with ground-truth 
annotations. To mitigate the problem of an insufficiently 
diverse training set, the framework needs to offer a very wide 
range of possible layouts and also has to emulate the typical 
features of historical documents, e.g. fading characters, 
curling paper and vertically connected text lines. 

The document image generator 
The proposed application generates completely random 

document images using two static resources. The background 
textures and the pictures used in the layout come from a pool 
that has to be manually created. We also need to configure 
maximum values for the number of columns and the number 
of pictures per page. 

The actual process of generating document images is 
divided into three phases: the decision phase, the layout phase 
and the render phase. The decision phase randomly 
determines some general layout specifications: 

 
• Render an ornamental frame? 
• Render separators between columns? 
• Render a top margin for running titles? 
• Render a bottom margin for footnotes? 
• Render a page number? 
• If a page number is rendered: page number position 
• Number of columns 
• Distance between columns 
• Vertical text line distances 
• Font size for body text line 
• Font size for headings 
• Text line skew angle 
• Number of pictures to be rendered. 

 
When these decisions have been made, the layout phase 

begins. Some of these steps are only conditionally executed, 
depending on the decisions made in the first phase. Also, 
some decisions (e.g. picture size) have to be made in this 
phase as the bounds for the picture size are only available 

after the columns have been fitted. The steps in the layout 
phase are: 

 
• Reserve areas for the ornamental frame 
• Reserve areas for the margins  
• Fit column areas into the print space left 
• Add pictures into the columns. 
 

Figure 4. Example of a generated document image. 

After the layout phase, all the ground-truth data has been 
generated for the ornaments, pictures and text blocks. The last 
step is the rendering phase, where pictures, ornaments and 
text are added and filters applied to better emulate historical 
documents. The rendering phase starts with a fully transparent 
canvas and involves performing the following steps: 
• Render the text on the blank canvas 
• Skew the text lines 
• Make some black text pixels more transparent 
• Select random pictures and add them in the correct 

position 
• Add the background texture. 
 
Figure 4 shows a document image generated using this 
method. 

Evaluation 
For our method to be successful, we needed to show that 

a neural network trained using only artificial data generalizes 
well enough to work on real-world data as well.  
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We therefore created a total of three datasets. Two of 
these were created using the software described above and 
solely contained artificial data: the training set consisted of 
1,000 artificial document images, the validation set 100. The 
third set was the real-world set. The real-world set was made 
up of 32 document images collected from German and 
Austrian libraries. For the real-world set, the ground-truth 
data was generated manually. 

For all three sets, there were two kinds of ground-truth 
data: bounding boxes for object detection and pixel-level 
annotations for semantic segmentation. The classes of 
bounding box were: text block, ornamental frame, and image. 
The ground-truth data for the segmentation task looked a little 
different. Here, every pixel in the image was assigned its own 
label. The labels we used were background, image, frame, and 
baseline. The baseline label was intended for use in textline 
extraction. A baseline is the line that most characters touch 
with the bottom of their bounding box, and some (e.g. “p” and 
“g”) cut to the bottom. The baselines in our ground-truth data 
were annotated with a 10-pixel-wide line. 

Experiments with object detection 
networks 

The first experiments were performed with the Single-
Shot MultiBox Detector (SSD) and the bounding-box 
annotations. SSD was used with vgg16 300x300 trained on 
ImageNet as the base network and a learning rate of 0.001. 
The training consisted of 150 epochs using the training 
dataset. The results of the best model can be seen in tables 1 
and 2.  

 
Class mAP validation mAP real-world 

Text block 0.99 0.58 

Ornamental frame 1.00 1.00 

Image 0.99 1.00 

Average 0.99 0.86 
Table 1: SSD results with IoU threshold=0.5 

While the results look good for an IoU threshold of 0.5, 
the results with a higher threshold of 0.8 highlight the 
problem: The bounding boxes did not fit tightly around the 
text blocks and ornamental frames. An example of this can 
also be seen in Figure 5. The network was able to detect the 
general position of text blocks and ornamental frames but 
could not provide exact bounding boxes. This was not a 
problem in terms of object detection, but for our specific 
purpose we needed a clean segmentation of the page. 

 
Class mAP validation mAP real-world 

Text block 0.78 0.00 

Ornamental 
frame 

1.00 0.00 

Image 0.64 1.00 

Average 0.81 0.33 
Table 2: SSD results with IoU threshold=0.8 

Figure 5. SSD results for a real-world image 

Experiments with semantic segmentation 
For semantic segmentation, we used the dhSegment 

framework provided by Oliveira et al. [7]. The training 
images were the same, but the ground-truth data was provided 
on a pixel level, so each pixel had its own label.  

We configured dhSegment to train for 50 epochs, with a 
learning rate of 5e-5. The results for the validation and real-
world datasets can be seen in table 3. Although these results 
don’t seem very promising, a look at the source images with 
the labels overlaid explains the numbers. An example of a full 
document image with overlaid predictions is shown in Figure 
9. 

 
 validation real-world 

pixAcc 0.78 0.58 

mIoU 0.27 0.19 

IoU background 0.65 0.54 

IoU images 0.29 0.21 

IoU text 0.02 0.005 

IoU frame 0.13 0.02 
Table 3: Semantic segmentation results 
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One recurring error that led to poor accuracy values was 
that page background pixels were misclassified as image 
pixels. This error had two underlying causes: The first had to 
do with the way we handled images that were rendered to the 
page. To imitate copper engravings, we binarized a fraction of 
the pictures before adding them to the document image.  

 

Figure 6. Example of a binarized picture that led to skewed ground-truth 
data 

When rendering them on the background, we set every 
white pixel in the rendered image to be fully opaque. With 
pictures where there was a light blue sky and the horizon was 
roughly in the middle of the image, this resulted in 50% fully 
opaque pixels that were annotated as image in the ground-
truth data (see Figure 6 for an example).  

The second cause for the background misclassification 
was that the documents we generated for the training run all 
had very little padding, so there were no examples during 
training in which larger padding was part of the background. 

Baseline extraction was not as successful as we had 
hoped. The network labeled only parts of the baseline as such 
and also some pixels at the top of the words’ bounding boxes. 
The issue with parts at the top of lines labeled as baseline 
might have been due to insufficient line spacing and an 
excessively large annotation with 10-pixel thickness for the 
baseline. However, we were pleased to note that text blocks 
were not misclassified as images or ornamental frames in any 
of our real-world images. Every text block was labeled as 

background with the baseline annotation scheme that can be 
seen in Figure 7. 

 

Figure 7. Example of baseline extraction 

The poor accuracy values obtained for frames using the 
real-world data appeared to be a result of false positives. In 
fact, they were not really false positives, but were just not 
labeled by us, as they were not frames per se, but horizontal 
rules. These were often annotated as ornamental frames by the 
neural network. See Figure 8 for an example. 

Figure 8. Horizontal rule that resulted in false positive “frame” pixels 

Conclusions and future work 
Our experiments showed that the SSD object detection 

neural network is not particularly effective for document 
image segmentation. However, the pixel-based classification 
approach delivered promising results. The accuracy numbers 
were not that good, but a look at the actual images reveals that 
many of the issues were either a problem with the training 
data or with evaluation data that was annotated without 
sufficient care. Based on the results that the network yields 
right now, it would be possible to extract non-textual elements 
from a document image. The annotation of pictures would still 
be a problem, as we have false positive areas where we would 
expect the classification to be background pixel. We will 
attempt to fix this with a higher padding for the whole print 
space and a more careful choice of images that will be 
binarized before they are added to the page.  
Another problem that remains to be solved is that of baseline 
extraction performance. This would be the biggest 
improvement for Tesseract, as the current implementation has 
problems with skewed lines. Looking forward, our main focus 
will be on improving that part of the system. One possible 
approach here could be to change the thickness of the ground-
truth lines, i.e. making them a little smaller. Another option, 
instead of annotating the baseline, would be to mark the 
whole character and connect all the characters in a line so that 
the network could extract one connected component per line. 
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Figure 9. Example of a real-world document image annotated with the 
pixel-based annotation approach. Red areas were classified as image, 
green as ornamental frame, and blue as baseline. 
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