hitps: //dOI org/10.2352 /issn.2168-3204.2019.1.0.17
2019 Society for Imaging Science and Technology

Creating artificial ground-truth data for document image page

segmentation

Oliver Paetzel and Hauke Bluhm, both intranda GmbH (Géttingen, Germany)

Abstract

We propose a framework that can be used to create
artificial ground-truth data for document images. The
resulting data can then be used to train machine-learning
systems to perform page segmentation tasks. The main focus
of this system is on images of historical documents. The
framework creates document images with headlines of
differing sizes, multiple column layouts, pictures and
decorative elements. To improve the resemblance with
historical document images, a set of backgrounds is created
manually by extracting background textures from real
historical documents. The fading and curling typical of old
manuscripts are also simulated.

Experiments with a neural network — trained on data
generated using the proposed framework and applied to real-
world images — show promising results with robust
segmentation of text and non-text image areas.

Evaluating Tesseract 4

OCR is a common procedure when creating large-scale
book digitization workflows in the open-source workflow
management system Goobi. The OCR process is usually fully
automated, i.e. without human involvement. In the past, this
step was performed using commercial software that we had to
often

purchase. Unfortunately, troubleshooting was
problematic when errors occurred.

ié,tﬁ Staaten) Hand-
Steatavissenschaften

! e oo “ a o

Flgure 1. Cut-out from an uncropped book document image with a large
black frame around it..

When the first beta release of Tesseract 4 became
available, we evaluated it against the commercial solution.
For simple layouts with just one block of text, we found that
Tesseract delivered comparable and sometimes better results.
However, Tesseract was less effective when it came to
preprocessing document images with more complex layouts.
The preprocessing steps that caused problems were

76

binarization, page segmentation and, in some cases, line
segmentation.

Preprocessing document images

Tesseract’s preprocessing pipeline consists of two steps.
The first of these is to binarize the image using Otsu’s method
[1]. The second is to extract text lines, trying to ignore
ornaments and images (a hybrid task that also involves a
certain amount of page segmentation). Both parts of the
pipeline have proven to be error-prone using the materials that
we deal with in our day-to-day work. The binarization process
does not handle document images with large black borders
very well. The reason is that Otsu’s method uses the
histogram of the gray-scale image to determine a fixed
threshold for the whole image. The black border skews the
histogram. As a result, the threshold selected using Otsu's
method is too conservative, and faint characters are erased.

RO LEC (TR PaS

ClI885e0°0\8i12197:5011
Telepbon 248/4 Haupt'DePot Telephon 248/4

von

Wattonis (i fhifiler Sauerkrunn

Modernst eingerichtete

Gegr. 1900 Flaschenbier-Fiillerei
mit elektrischen Betrieb.
Vertrieb von nur konkurenzlosen, vorzugllchen Flaschen-
bieren, hell und dunkel und Zustellung ins Haus. Eigenes
Zipfer Bierstiiberl
Ausschank von nur gut gekiihltem erstklassigen
Zipfer Spezialbier.
Um geneigten Zuspruch ersucht der Besitzer

Josef Eherl, Gmunden, Traungusse 3

Flaschenbierfiilierei, Bierausschank, Mineralwasserdepot

1%}

Gegr. 1900

011103 CLlalIBSe OO\ EIIDZC1e1IB0:e 00 8 1ID:

SZ.OlelI0B:e 9% O\

Figure 2. Example of an advertisement with an ornamental frame in which
Tesseract detects characters.

You can see an example in Figure 1. The text line
extraction process recognizes possible characters in
ornamental frames (see an example in Figure 2) and has
problems with skewed text lines and lines that are printed
with little or no margin (see Figure 3).

To make Tesseract more effective, we replace the whole
preprocessing pipeline with our own implementation. This can
be done by using the Tesseract API and only letting it
recognize text in previously computed bounding boxes that
represent the text lines in the image. Our preprocessing
pipeline consists of the usual steps but differs in the order of
those steps. We first segment the image into text blocks,
images and ornaments. Next, the text lines are extracted from
the text blocks, and, as the last step, the text lines are

SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

binarized. As convolutional neural networks have proven to
be efficient in image classification [2], [3], object detection
[4]-[6] and document image page segmentation [7]-[9], we
decided to use this approach for our page segmentation step.

25 M CUEEUG TTEwSIs ~vvre m—me o
%ii]d; ?u h:ag“en' htte, die UneinigPeit der Parteien der ’(5:,;‘1@;
dafiir gewefen, daf auf feine Weiterberatung m 30. Ztlusf uf
versichtet worden ift. Daf das Berufsidnlgejes

uriictgefte 0] o 1er 4 L _1¢]
iber gie‘ Befeligebung der £ander am weifeften vgrg;idmtﬁhn;
aucy im Teten Jahre haben wicder etqielne uf;:b ::t ioz) b
Gejete ge E i enden weiter a :
Qefeg? gej_@_gfff_ﬂ obret ,b,};ep b eﬁe_hq..-a.m..mmn hoc §ebhrete
Figure 3. Example of skewed lines which Tesseract’s text line extraction

algorithm handles badly. Note the horizontal red line.

The problem with training data

Although Oliveira et al. [7] and Schreiber et al. [8] have
shown that convolutional neural networks are effective in
segmenting document images, they did so using relatively
small training and evaluation sets with a total of 150 images
[10]. These are unlikely to be sufficiently representative of all
the data that is digitized in libraries today. As we are unable
to create this kind of data manually, we need a framework to
automatically generate document images with ground-truth
annotations. To mitigate the problem of an insufficiently
diverse training set, the framework needs to offer a very wide
range of possible layouts and also has to emulate the typical
features of historical documents, e.g. fading characters,
curling paper and vertically connected text lines.

The document image generator

The proposed application generates completely random
document images using two static resources. The background
textures and the pictures used in the layout come from a pool
that has to be manually created. We also need to configure
maximum values for the number of columns and the number
of pictures per page.

The actual process of generating document images is
divided into three phases: the decision phase, the layout phase
and the render phase. The decision phase randomly
determines some general layout specifications:

Render an ornamental frame?

Render separators between columns?
Render a top margin for running titles?
Render a bottom margin for footnotes?
Render a page number?

If a page number is rendered: page number position
Number of columns

Distance between columns

Vertical text line distances

Font size for body text line

Font size for headings

Text line skew angle

Number of pictures to be rendered.

When these decisions have been made, the layout phase
begins. Some of these steps are only conditionally executed,
depending on the decisions made in the first phase. Also,
some decisions (e.g. picture size) have to be made in this
phase as the bounds for the picture size are only available

ARCHIVING 2019 FINAL PROGRAM AND PROCEEDINGS

after the columns have been fitted. The steps in the layout
phase are:

Reserve areas for the ornamental frame
Reserve areas for the margins

Fit column areas into the print space left
Add pictures into the columns.

Lorem ipsum dolor sit ame, est id mazim homero latine. In eos dico consul

Lorem ipsum dolor sit
amet, est id mazim homero latine. n eos|
dico consul op =

llegendos referrentur. Maiorum convenire
o0 probatus conveniro nam <,

rem ipsum dolor sit amet, est id

Lorem ‘psum dolor sif ame, est id mazim
homero latne. In e0s dico consul epicurel
Et duo utraque logendos roforrontur. Maiorum convonire o2 vis, posse probatus convenira -
A, 8 SOISER AUGIAM POSKLANE 1. Ut putant fabulas sos no, minim tion pri LT [psum dolor sit amet, st id

ex. Te bolum abhorreant quasrendum eam, duo modus definiebas persequeris ne [lud Mazim homero latine. In eos dico

2dvorsarium at fus, an petentium mnesarchum ropudiandac soz. Ex tota facilis's salutatus consul epicurei. Et duo utroque |
s, vis oa utinam facese possim. Id vis probo dicat oporsers. Mei putens corpora te. Ut legendos referrentur. Maiorum

ea vis, posse probatus
convenire mam cu, fus soluta
audiam postulant ei. Unum putant
fabulas eos ne, minim tation pri ex
Te solum abhorreant quaerendum
eam, duo modus definiebas
persequeris ne. Illud adversarium

o 2

[Lorem ipsum dolor sit amet, est id|

mezim homero latine. In eos dicol

consul epicurei. Et duo’ utroquel

legendos referrentur. Maiorum
ea vis, posse pr

Lorem ipsum dolor sit
amet, st 1d masim homero Iatine. In
cos dico consul epicures, Et du
wrroque logondon referranur
Matorum _convenire e vis, posse
probatus convenire nam cu, s solutal
udioat. postaaat o Unun puiantll @00000000000000000008
fabulas cos ne, mintm tation pri ex. ; T
| Te solum abhorreant quaugndum Lotem {psum dolor it et idg ||Lorem ipsum dolor sit amet,
eam, duo modus definiebas] mazm; homero la%}je dh" eo:‘ dicoy est id mazim homero latine. In
Semsn spiwen B cvo, uliodna® lleos dics eonsull epienmel | B
How chos Bl R ANEERE logendos referrentur. Maiorum i 5 5
repudiandac sea. Fx tots macii] @convenire s vis, posse probatus§ | U0 utrogue egendos
@ccivente nam cu, fus coluteg | |referrentur. Maiorum convenire| ¢
audiam postulant ef. Unum putant ea vis, posse probatus
convenire nam cu, ius soluta
audiam postulant ei. Unum
putant fabulas eos ne, minim
tation pri ex. Te solum
abhorreant quaerendum eam, || 4

fabulas eos ne, minim tation pri ex

Te solum abk ,

||| @eam, duo
ipars?q\lens ne. Tllud adversarium at

ius, an petentium
repudiandac sea. Ex tota facilisis,

Lorem ipsum]

aotor stt saner, e

| i ‘mazim _ homero
p

Lcgendos.

Lorem

ipsum dolor sit]
amet, est id|
jmazim homerol
Latine 10 codf

Lorem Lorem

ipsum dolor, ipeum dolort]
Isit amet, est| sit amet, est]

5 S lid mazim|
Hid mazim| H i
L == Lorem

fll ipsum dolor it
TLorem ipsum
dolor sit amet, est
id mazim homero

Figure 4. Example of a generated document image.

After the layout phase, all the ground-truth data has been
generated for the ornaments, pictures and text blocks. The last
step is the rendering phase, where pictures, ornaments and
text are added and filters applied to better emulate historical
documents. The rendering phase starts with a fully transparent
canvas and involves performing the following steps:

e Render the text on the blank canvas

e Skew the text lines

e Make some black text pixels more transparent

e Select random pictures and add them in the correct
position

e Add the background texture.

Figure 4 shows a document image generated using this
method.

Evaluation

For our method to be successful, we needed to show that
a neural network trained using only artificial data generalizes
well enough to work on real-world data as well.

77

We therefore created a total of three datasets. Two of
these were created using the software described above and
solely contained artificial data: the training set consisted of
1,000 artificial document images, the validation set 100. The
third set was the real-world set. The real-world set was made
up of 32 document images collected from German and
Austrian libraries. For the real-world set, the ground-truth
data was generated manually.

For all three sets, there were two kinds of ground-truth
data: bounding boxes for object detection and pixel-level
annotations for semantic segmentation. The classes of
bounding box were: text block, ornamental frame, and image.
The ground-truth data for the segmentation task looked a little
different. Here, every pixel in the image was assigned its own
label. The labels we used were background, image, frame, and
baseline. The baseline label was intended for use in textline
extraction. A baseline is the line that most characters touch
with the bottom of their bounding box, and some (e.g. “p” and
“g”) cut to the bottom. The baselines in our ground-truth data
were annotated with a 10-pixel-wide line.

Experiments with object detection
networks

The first experiments were performed with the Single-
Shot MultiBox Detector (SSD) and the bounding-box
annotations. SSD was used with vggl6 300x300 trained on
ImageNet as the base network and a learning rate of 0.001.
The training consisted of 150 epochs using the training
dataset. The results of the best model can be seen in tables 1
and 2.

Class mAP validation | mAP real-world
Text block 0.99 0.58
Ornamental frame 1.00 1.00
Image 0.99 1.00
Average 0.99 0.86

Table 1: SSD results with loU threshold=0.5

While the results look good for an IoU threshold of 0.5,
the results with a higher threshold of 0.8 highlight the
problem: The bounding boxes did not fit tightly around the
text blocks and ornamental frames. An example of this can
also be seen in Figure 5. The network was able to detect the
general position of text blocks and ornamental frames but
could not provide exact bounding boxes. This was not a
problem in terms of object detection, but for our specific

image 0.999

[ictmitt und in feinenr Fletide ehw S;;n;:nn
i, dic grof; aenug twor, um die @la2fnbiel
Jouigunehmen. RNadydem iy bh: !le‘m. Bl
tpng gefitlit batte, fiigle ih die Rapjel ain,|
bic i) aber vorfer ecjt antifeptiidy gulm{;t
Gutte. il gwet ober dret Nadeln mibte
dann die Wanbe und die Dperation fwar
idiehen. Div Wunbe heilte nw)|
imd nady ein paar Tagen ki te nur ein|
fleiner roter Fledt nodh die Stelle, an dev die]
Dperation vorgenomnien worden war, tib
tend man bie Slapfel wunter der Hout wie
cinen fleinen ftern fithlen fonnte. WIS id)

ki ‘bigchen toch?” fragte id.
wya, e jlymerat ein mnlg “ anfwortete er.
gpnkcz erlaubte er wric mdit mehr, die be-

de Stelle g unterfudien, da, 1vie er bes

o , ol& er mid) bejudite, wm mix Mbien Ay

"~ ie wollen Berlin beelaffent” fraghe i
thn im Tone eines Meammed, der nidit recht
wetfs, wos er fagen foll.

3 ,,3« id) will mal feben, ob die Wilfe fhon
meinen Bater gejeeffen Haben. Jn dielem

Tomme. 8 tut Rupland rabrl
o s o il B et S

i imﬁ uidyt entjtehen, 1mb wenn er durdhaus
feinent eigenen Sdrper Aerimerperimen-
ren toollte, warum follte er das nidit?

qumﬁ[:)I b;e Dbrrnmn vorgenemmmen

ekt gleid),” anhnuld i
unh mas fdlogen Sie unr m idy Nhnen
tor die Hant rm.uqen foll2"

»Bud ba htee,” anfvoclete et und bolte
6ot eine fensr Glasfapieln Gerver, die id
il Botte madsen jeten.

o5 it jo Glos.” i
“Un fo Gejier. FMein Bater fat Blei in
nem §ieper, idy will Glad dein haden.”
| Durdy feinerler Bride lieh er fidy dr:“ ¥

‘ image 0.558

wfel an der inneren 4
s linfen Oberavned einufilbren. mtr
nnten bte Musteln nmt davauj toicfen wid

1 ie @efahr bor, dap durd
 Jufall von aufen her ein bof

Daranj exjolgen wiirde,

it bicfer Babl war Hummajon fehr
rffanden. Gr jegte fich 1und entbldfte
Yo, Seine Haut war fo gart und
N iy teXt-0-530- =

o ir —11 4

Figure 5. SSD results for a réé)—\)[/orld image

Experiments with semantic segmentation

For semantic segmentation, we used the dhSegment
framework provided by Oliveira et al. [7]. The training
images were the same, but the ground-truth data was provided
on a pixel level, so each pixel had its own label.

We configured dhSegment to train for 50 epochs, with a
learning rate of 5e-5. The results for the validation and real-
world datasets can be seen in table 3. Although these results
don’t seem very promising, a look at the source images with
the labels overlaid explains the numbers. An example of a full
document image with overlaid predictions is shown in Figure
9.

purpose we needed a clean segmentation of the page. validation real-world
Class mAP validation | mAP real-world pixAcc 0.78 0.58
Text block 0.78 0.00 mloU 0.27 0.19
Ornamental 1.00 0.00 loU background 0.65 0.54
frame loU images 0.29 0.21
Image 0-64 1.00 loU text 0.02 0.005
Average 081 0.33 loU frame 0.13 0.02
Table 2: SSD results with loU threshold=0.8

78

Table 3: Semantic segmentation results

SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

One recurring error that led to poor accuracy values was
that page background pixels were misclassified as image
pixels. This error had two underlying causes: The first had to
do with the way we handled images that were rendered to the
page. To imitate copper engravings, we binarized a fraction of
the pictures before adding them to the document image.

data

When rendering them on the background, we set every
white pixel in the rendered image to be fully opaque. With
pictures where there was a light blue sky and the horizon was
roughly in the middle of the image, this resulted in 50% fully
opaque pixels that were annotated as image in the ground-
truth data (see Figure 6 for an example).

The second cause for the background misclassification
was that the documents we generated for the training run all
had very little padding, so there were no examples during
training in which larger padding was part of the background.

Baseline extraction was not as successful as we had
hoped. The network labeled only parts of the baseline as such
and also some pixels at the top of the words’ bounding boxes.
The issue with parts at the top of lines labeled as baseline
might have been due to insufficient line spacing and an
excessively large annotation with 10-pixel thickness for the
baseline. However, we were pleased to note that text blocks
were not misclassified as images or ornamental frames in any
of our real-world images. Every text block was labeled as

ARCHIVING 2019 FINAL PROGRAM AND PROCEEDINGS

background with the baseline annotation scheme that can be
seen in Figure 7.

Dabei unverftindliche Worte in den
0w ja4, fprad) er Dalblaut, ,id
will Heute Abend Gewipheit Huben;
Hildberg ift nidht veich, doch iibertrie-
ben ehrlich, dad8 mup ibhur jein Feind
fagen, — er wird mit beiden Hinden
amgreifen, und Meta? — Hm, jie wird
much nicht mwein fogen, ¢8 fist {idh in dex

Figure 7. Example of baseline extraction

The poor accuracy values obtained for frames using the
real-world data appeared to be a result of false positives. In
fact, they were not really false positives, but were just not
labeled by us, as they were not frames per se, but horizontal
rules. These were often annotated as ornamental frames by the
neural network. See Figure 8 for an example.

zn haben bei C. T, Hagemann.

R allEh oy

Figure 8. Horizontal rule that resulted in false positive “frame” pixels

Conclusions and future work

Our experiments showed that the SSD object detection
neural network is not particularly effective for document
image segmentation. However, the pixel-based classification
approach delivered promising results. The accuracy numbers
were not that good, but a look at the actual images reveals that
many of the issues were either a problem with the training
data or with evaluation data that was annotated without
sufficient care. Based on the results that the network yields
right now, it would be possible to extract non-textual elements
from a document image. The annotation of pictures would still
be a problem, as we have false positive areas where we would
expect the classification to be background pixel. We will
attempt to fix this with a higher padding for the whole print
space and a more careful choice of images that will be
binarized before they are added to the page.
Another problem that remains to be solved is that of baseline
extraction performance. This would be the biggest
improvement for Tesseract, as the current implementation has
problems with skewed lines. Looking forward, our main focus
will be on improving that part of the system. One possible
approach here could be to change the thickness of the ground-
truth lines, i.e. making them a little smaller. Another option,
instead of annotating the baseline, would be to mark the
whole character and connect all the characters in a line so that
the network could extract one connected component per line.

79

Figure 9. Example of a real-world document image annotated with the
pixel-based annotation approach. Red areas were classified as image,
green as ornamental frame, and blue as baseline.

References

[1] N. Otsu, “A Threshold Selection Method from Gray-Level
Histograms”, IEEE Transactions on Systems, Man, and
Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979.

80

[2] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”, arXiv:1704.04861
[cs], Apr.2017.

[3]1 K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition”, arXiv:1512.03385 [cs], Dec. 2015.

[4]1J.Redmon and A. Farhadi, “YOLOv3: An Incremental
Improvement”, arXiv:1804.02767 [cs], Apr. 2018.

[S]T.-Y.Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss
for Dense Object Detection”, arXiv:1708.02002 [cs], Aug. 2017.

[6] W. Liu et al., “SSD: Single Shot MultiBox Detector”, Computer
Vision — ECCV 2016, vol. 9905, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016,
pp-21-37.

[7]1S. A. Oliveira, B. Seguin, and F. Kaplan, “dhSegment: A generic
deep-learning approach for document segmentation”,
arXiv:1804.10371 [cs], Apr.2018.

[8] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed,
“DeepDeSRT: Deep Learning for Detection and Structure
Recognition of Tables in Document Images”, 14th IAPR
International Conference on Document Analysis and Recognition
(ICDAR), 2017, vol. 01, pp. 1162-1167.

[9] M. Alberti, M. Seuret, V. Pondenkandath, R. Ingold, and M.
Liwicki, “Historical Document Image Segmentation with LDA-
Initialized Deep Neural Networks”, arXiv:1710.07363 [cs], pp.
95-100,2017.

[10] F. Simistira, M. Seuret, N. Eichenberger, A. Garz, M. Liwicki, and
R.Ingold, “DIVA-HisDB: A Precisely Annotated Large Dataset
of Challenging Medieval Manuscripts”, 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR),
Shenzhen, China, 2016, pp. 471-476.

Author biography

Oliver Paetzel studied applied computer science in Gottingen
(Germany), specializing in digital humanities. He joined the German
software company intranda GmbH as a software developer in 2012
and concentrates on machine-learning technology and workflow
automation. As product manager, he is also responsible for the
development of the open-source workflow management tool Goobi.

Hauke Bluhm studied physics in Gottingen (Germany), with a
focus on complex systems. In 2018, he joined the German company
intranda GmbH as a software developer. His work includes OCR
system training and workflow automation with Goobi

SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

