
 

Identifying top performing TF*IDF classifiers using the CNN 
corpus 
A. Marie Vans and Steven J. Simske; HP Labs; Fort Collins, CO/U.S.A.  

 
Abstract  

TF*IDF (term frequency times inverse document frequency) is a 
common metric used to automatically discover keywords in 
documents for use in classification and other text processing 
applications. We are interested in determining whether these 
measures can help in classifying documents.  There are multiple 
ways to define TF*IDF, but there has been no real attempt to 
determine the value of these different forms. We explore a large 
family of 112 TF*IDF measures (corresponding to an a priori 
estimate of 20 degrees of freedom among these measures) applied 
to 588 CNN articles belonging in 12 classes such as Business, 
Sport, and World.  We postulate that at least some sets of these 
measures must be effective for classification. The goal is to use a 
set of TF*IDF measures that best match the a priori classifications 
by CNN. We also show that by combining the results of a few well-
performing TF*IDF measures can increase classification results. 

Introduction 

The idea of using somewhat rare terms to identify a document 
extends back several decades [1]. One well-known method of 
identifying these fairly rare terms is the term frequency times the 
inverse of the document frequency, or TF*IDF. The TF*IDF 
measurement increases for a given document in proportion to the 
specific term’s occurrence, and inversely proportionate to its 
occurrence in other documents. Ideally, a term that only occurs in 
one document is a perfect query or indexing term for that 
document. However, TF*IDF has at least 112 mathematical 
expressions, and to date no one has determined which is optimal 
for a given corpus, or how much the performance of these different 
incarnations of the TF*IDF varies. 

Last year, we presented a word-frequency based classification 
at the Archiving’16 conference in which we demonstrated how a 
set of 3,000 CNN articles could be classified using this simple 
frequency metric. The results of those experiments showed how 
the same approach might be used with a more complex set of 
measures which we defined as family of 112 TF*IDF measures. 
We consider their utility for classification of a ground-truthed set 
of documents organized into 12 classes.  This comprehensive study 
is used to identify which paired combinations of 8 different TF and 
14 different IDF formulations (meaning there are 7 degrees of 
freedom for TF and 13 degrees of freedom for IDF) are likely to be 
useful for the archiving task of classification. In so doing, we 
provide insight into the nature of term rareness for the automation 
of corpus tagging and usability throughout its life cycle. 

In Methods and Materials, we cover the TF*IDF measures 
and how we generate 112 of them. The CNN data set and the pre-
processing of the files are discussed. A step-by-step description for 
each of the algorithms used for classification purposes is presented. 
The results are then shown for the best performing measures as 
well as a measure that demonstrates how many attempts to classify 
each measure undergoes before identifying the correct class. 
Finally, we determine the maximum accuracy possible for 
combinations of the top performing TF*IDF measures.    

Methods and Materials 

TF*IDF 
TF*IDF (Term Frequency x Inverse Document Frequency) [2, 

3, 4, 5] is commonly used in information retrieval and classification 
tasks [6, 7, 8, 9, 10, 11, 112]. We have defined a total of 112 TF*IDF 
equations created by using a combination of 14 inverse document 
frequency equations for each of 8 term document frequency 
equations. These were computed for a set of CNN articles, which 
were divided between 12 classes. Within each class, articles were 
assigned to two equally-sized groups: one for training and one for 
testing. The total number of files used for each class depends on the 
number of files in the class with the smallest number of files 
assigned to it. In our case, one class had only 98 files total assigned 
to it. The largest class contained 988 files. In order to make sure all 
classes contributed evenly to the classification task, we used 49 
randomly chosen files for each training and each test set from each 
class. For this paper, we focus on determining the effectiveness of 
using the set of TF*IDF measures on all words for classifying the 
CNN file. Table 1 provides the 8 term frequency (TF) measures 
while Table 2 provides the 14 inverse document frequency (IDF) 
measures. To build a measure, we multiply one of the TF measures 
by one of the IDF equations. For example, the Power-Mean measure 
would be implemented as shown in Equation 1: 

 
௜,௝௉௢௪௘௥ݓ                    ∗ ܰ െ 1 ௜,௡ൗݓ                                          (1) 
                             
 
An experiment consists of preprocessing each document and 

creating an input stream for each article. We create a stream of 
tokens composed of individual words using the sharpNLP [13] C# 
open source project. The stream is then converted into a bag of 
words consisting of all non-stop words in each file.

 
   

105ARCHIVING 2017 FINAL PROGRAM AND PROCEEDINGS

https://doi.org/10.2352/issn.2168-3204.2017.1.0.105
© 2017; Society for Imaging Science and Technology



 

 

Once the TF*IDF measures are generated for each word in the 
file, we can create a master list of words for all the files in a given 
class. We create this master list by summing all the TF*IDF values 
for each word and normalizing this sum by the number of files in 
which the word is found.  This gives us a single TF*IDF measure 
for each word found in a class which we can then use for classifying 
articles from the test set of documents.  

During testing, we first determine the TF*IDF measure values 
for all the words in a document. We then compare them with the 
normalized values for that word in each of the classes using the dot 
product of the TF*IDF value for the word in the test file with that of 
the normalized TF*IDF value for the word in each training class. A 
high result value indicates that the word may belong to the class. 
The class that produces the highest dot product values for all the 
words in the file is then assigned as the class for that document.  This 
procedure is used for all the test files in each class for each of the 
112 TF*IDF measures. The performance of each TF*IDF is based 
on how well it predicts the correct class for each of the test files. The 
TF*IDF measures with the highest classification accuracy are 
chosen as the top classifiers. A more detailed description of the 
algorithms and processes are presented below. 
 
Table 1: TF Equations Used in Experiments 

 
 
Table 2: IDF Equations Used in Experiments. 

 IDF Name IDF Denominator 

1 NormLogsOfSums log ଶ
௅௢௚ோ௔௧௜௢

൫∑ ௝݇
ேିଵ
௝ୀଵ ൯

1 ൅ logଶ൫ݓ௜,௡൯
 

 
          if LogRatio ≥ MinLogRatio 
 
logଶ൫∑ ௝݇

ேିଵ
௝ୀଵ ൯

1 ൅ logଶ൫ݓ௜,௡൯
൘   

        if LogRatio < MinLogRatio 

2 NormSumsOfLogs log ଶ
௅௢௚ோ௔௧௜௢

൫∑ ൫ ௝݇൯
ேିଵ
௝ୀଵ ൯

൫∑ ൫1 ൅ logଶ൫ݓ௜,௡൯൯ேିଵ
೙సభ ൯	

		

 

݋݅ݐܴܽ݃݋ܮ	݂ܫ ൒  ݋݅ݐܴܽ݃݋ܮ݊݅ܯ
 

logଶ൫∑ ൫ ௝݇൯
ேିଵ
௝ୀଵ ൯

൫∑ ൫1 ൅ logଶ൫ݓ௜,௡൯൯ேିଵ
௡ୀଵ ൯

		

 

݋݅ݐܴܽ݃݋ܮ	݂ܫ ൏ ݋݅ݐܴܽ݃݋ܮ݊݅ܯ

3 
SumOfPowers 

ܰ െ 1
∑ ቀ൫ݓ௜,௡൯

௉௢௪௘௥
ቁேିଵ

௡ୀଵ
൘  

4 
PowerOfSums 

ܰ െ 1
൫ݓ௜,௡൯

௉௢௪௘௥൘  

5 Mean ܰ െ 1 ௜,௡ൗݓ  

6 NormSumOfLogs ∑ ௝݇
ேିଵ
௝ୀଵ

∑ ൫1 ൅ logଶ൫ݓ௜,௡൯൯ேିଵ
௡ୀଵ

൘  

7 NormLogOfSums ∑ ௝݇
ேିଵ
௝ୀଵ

1 ൅ logଶ൫ݓ௜,௡൯
൘  

8 NormSumOfPowers ∑ ௝݇
ேିଵ
௝ୀଵ

∑ ൫ݓ௜,௡൯
௉௢௪௘௥ேିଵ

௡ୀଵ
൘  

9 NormSumsOfPowers ∑ ൫ ௝݇൯
ேିଵ
௝ୀଵ

஽௢௖௉௢௪௘௥

∑ ቀ൫ݓ௜,௡൯
ௐ௢௥ௗ௉௢௪௘௥

ቁேିଵ
௡ୀଵ

 

10 SumOfLogs ܰ െ 1
∑ ൫1 ൅ logଶ൫ݓ௜,௡൯൯ேିଵ
௡ୀଵ

൘  

11 LogOfSums ܰ െ 1
1 ൅ logଶ൫ݓ௜,௡൯൘  

 

Where: 

i =current word 
j = current document 
k = total words in document j 
n = total words in other than current document  
N = total number of documents in the corpus 
wi,j  = number of occurrences of word i  in document j. 
wi,n = word occurrences of word i in other documents. 
ni = number of documents in which i occurs. 
LogRatio = ratio of log for individual word to log for 
document  length 
MinLogRatio = user settable minimum for LogRatio 
WordPower & DocPower = adjustable value, we used 2 in our 
 experiments. 

CNN Data Set 
The CNN data set is a set of news articles, each of which have 

been classified by CNN into one of 12 classes. The number of files 
in each class ranges from 98 to 988. We keep the bias of any single 
class to a minimum by randomly taking 98 files from each class 
and then evenly assigning them to a test or training set. The total 
number of unique words in 588 files is 158,423 and these are 
divided into 80,710 training-set words and 77,713 test-set words. 
Table 3 shows the number of unique words found in 49 files for 
each class for both the test and training sets. Note that this data set 
was originally procured by Rafael Dueire Lins et. al [14] at the 
Universidade De Pernambuco in Recife, Brazil.  

 

 TF Name TF Numerator 

1 Power ൫ݓ௜,௝൯
௉௢௪௘௥

 

2 Mean ݓ௜,௝ 

3 NormLog 1 ൅ logଶ൫ݓ௜,௝൯
logଶሺ݇ሻ
൘  

4 Log 1 ൅	 logଶ൫ݓ௜,௝൯ 

5 NormLogs 1 ൅ logଶ൫ݓ௜,௝൯
log ଶ

௅௢௚ோ௔௧௜௢
ሺ݇ሻ	൙  

݋݅ݐܴܽ݃݋ܮ	݂ܫ ൒  ݋݅ݐܴܽ݃݋ܮ݊݅ܯ
 
1 ൅ logଶ൫ݓ௜,௝൯

logଶሺ݇ሻ
൘  

݋݅ݐܴܽ݃݋ܮ	݂ܫ ൏  ݋݅ݐܴܽ݃݋ܮ݊݅ܯ

6 NormMean ݓ௜,௝ൗ݇  

7 NormPower ൫ݓ௜,௝൯
௉௢௪௘௥

݇௉௢௪௘௥
൘  

8 NormPowers ൫ݓ௜,௝൯
ௐ௢௥ௗ௉௢௪௘௥

݇஽௢௖௉௢௪௘௥
൘  

106 © 2017 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY



 

 

Table 3: CNN Data Set – Words 

 

Preprocessing 
Each of the 49 files in the 12 classes are preprocessed in order 

to identify the words that will be used for classification purposes. 
One of the first operations we do is remove “stop words”. Stop 
words are common words that add very little information for 
understanding the content of a document. For example, words like 
“the”, “and”, and “or” are stop words. All punctuation, with the 
exception of hyphenation, is also removed. While many Natural 
Language Processing approaches use lemmatization, we ran some 
preliminary experiments and determined that lemmatization did 
not significantly improve classification accuracy but it did increase 
processing time. Therefore, we decided not to do lemmatization on 
the files.  

We use the C# Open-Source Natural Language Processing 
(NLP) program, SharpNLP – (https://sharpnlp.codeplex.com/) for 
parsing the files and retrieving the data used for our classification 
algorithm. SharpNLP contains many different NLP functions, but 
we use only the sentence splitter, the tokenizer, and the part-of-
speech tagger. The sentence splitter allows us to collect data on 
sentences, the tokenizer identifies individual words, and the part-
of-speech tagger allows us to identify the function of a word in a 
sentence, information that we keep as part of the word structure. 

 

Algorithms 

Part I: 
Using Training Set files in each class:  (i.e. do this 12 times) 
1. For each file in the set: 

1.1. Create a word object for every unique word in the file 
1.2. Calculate the weight of each word using each TF*IDF 

measure: 
1.2.1. TF*IDF measure calculated for each word, 

normalized by the number of occurrences of the 
word in all the files in the training class. 

2. Build a Master Word List for each class separately: 
2.1. For each unique word in the training set for the class, 

use the average weight of each TF*IDF for the word 
created by summing the weight of word in each file and 
normalize by the number of files in which the word is 
found: 

 

௖௟௔௦௦೔ݓ        ൌ
∑ ܨܶ ∗ ௪೎೗ೌೞೞ೔ܨܦܫ

௡௙௜௟௘௦
௝ୀ଴

௪೎೗ೌೞೞ೔ݏ݈݂݁݅݊

൘               (2) 

 
where ݓ௖௟௔௦௦೔  is a unique word in the class and ࢏࢙࢙ࢇ࢒ࢉ࢙࢝ࢋ࢒࢏ࢌ࢔

 

denotes the number of files in the class in which the word occurs.  
 

3. Save each Master Word list for each class in separate file for 
later use during classification tasks. 

Part II: 
Using the Testing Set files for a specific class: (i.e. business) 
1. For each file in the set: 

1.1. Create a word object for every unique word in the file 
1.2. Calculate the weight of each word using each TF*IDF 

measure: 
1.2.1.  TF*IDF measure calculated for each word, 

normalized by the number of occurrences of the 
word in all the files in the test class. 

2. Build a Word List for the current set of test documents that 
needs to be classified: 
2.1. For each unique word in the test set, use the average 

weight of each TF*IDF for the word created by 
summing the weight of word in each file and normalize 
by the number of files in which the word is found: 
  

 

௖௟௔௦௦೔ݓ      ൌ
∑ ܨܶ ∗ ௪೎೗ೌೞೞ೔ܨܦܫ

௡௙௜௟௘௦
௝ୀ଴

௪೎೗ೌೞೞ೔ݏ݈݂݁݅݊

൘                 (3) 

 
where ݓ௖௟௔௦௦೔  is a unique word in the class and ࢏࢙࢙ࢇ࢒ࢉ࢙࢝ࢋ࢒࢏ࢌ࢔

  

denotes the number of files in the class in which 
the word occurs.  

3. Save the test word lists for later classification tasks. 
 

Part III: 

Classify a single document or a set of documents 

1. Load all training set words created in Part I, one set for each 
class.  

2. Load the test set words created in Part II. 

Class Name TTL Number 
of Train Set 
Unique 
Words 

TTL 
Number  of  
Test Set 
Unique 
Words 

Total 
Number of 
Words 
Processed 

Business 6149 5747 11896 

Health 6280 6001 12281 

Justice 5454 5232 10686 

Living 7903 7002 14905 

Opinion 7902 7754 15656 

Politics 5872 5750 11622 

Showbiz 4979 6285 11264 

Sport 5657 5400 11057 

Tech 6626 6176 12802 

Travel 11364 9172 20536 

US 6596 6594 13190 

World 5928 6600 12528 

107ARCHIVING 2017 FINAL PROGRAM AND PROCEEDINGS



 

 

3.1.3   Each CClass becomes a summation of each word 
calculation in (3) above. Once all words have been 
processed, the class chosen for the file is the class 
containing the max value for all Cclass variables: 

 

௙௜௟௘೙ݏݏ݈ܽܥ ൌ 	ݔܽ݉ ∑ ஼௟௔௦௦೔ܥ
ݏ݀ݎ݋ݓ݊
௜ୀଵ                       (5) 

3. For each of the 112 TF*IDF measure set of results: 

3.1. For the single file or set of files in the test set: 

3.1.1. Find each unique word in the file or set of files in 
each of the training set class and record its 
weight. 

3.1.2. Chose the class each word belongs to, based on 
the maximum class value (see equation 3): 

 

 
 

 

 

 

                                                                                                    

 

 

 

For example, if the results from one TF*IDF were as shown in 
table 4, the resulting classification would be “Business”.  

 
Table 4: Example Result for single TF*IDF Measure 

Class Name TF*IDF Result 
Business 0.00069364 
Health 0.00030063 
Justice 0.00025000 
Living 0.00026707 
Opinion 0.00033446 
Politics 0.00034694 
Showbiz 0.00025372 
Sport 0.00029984 
Tech 0.00033337 
Travel 0.00023201 
US 0.00031539 
World 0.00040208 

 

 

 

 

 

Part IV: 

Calculate the mean attempts to classify:  

1. Determine how many attempts each TF*IDF equation 
classifies a file until it is classified correctly: 

          (૚	 ൈ ૚ࡼ ൅ ૛ ൈ ૛ࡼ ൅ ૜ ൈ ૜ࡼ …൅ ૚૛	 ൈ ૚૛ሻࡼ	 ⁄  (5)         ࢙ࢋ࢒࢏ࢌ࢔

Where: 	
૚	ࡼ ൌ  ࢚࢟࢘	࢚࢙࢘࢏ࢌ	࢔࢕	ࢊࢋ࢏ࢌ࢏࢙࢙ࢇ࢒ࢉ	࢟࢒࢚ࢉࢋ࢘࢘࢕ࢉ	࢘ࢋ࢈࢓࢛࢔	

૛ࡼ 	ൌ 	࢙ࢋ࢏࢚࢘	࢕࢚࢝	࢘ࢋ࢚ࢌࢇ	ࢊࢋ࢏ࢌ࢏࢙࢙ࢇ࢒ࢉ	࢟࢒࢚ࢉࢋ࢘࢘࢕ࢉ	࢘ࢋ࢈࢓࢛࢔	
⋮ 

૚૛ࡼ 	ൌ 	࢚࢟࢘	࢚࢙ࢇ࢒	ࢋࢎ࢚	࢔࢕	ࢊࢋ࢏ࢌ࢏࢙࢙ࢇ࢒ࢉ	࢟࢒࢚ࢉࢋ࢘࢘࢕ࢉ	࢘ࢋ࢈࢓࢛࢔	

	࢙ࢋ࢒࢏ࢌ࢔ ൌ  ࢙࢙ࢇ࢒ࢉ	ࢍ࢔࢏࢚࢙ࢋ࢚	࢔࢏	࢙ࢋ࢒࢏ࢌ	ࢌ࢕	࢘ࢋ࢈࢓࢛࢔	

Table 5 shows an example taken from a simple frequency 
metric [15]. This table shows that, based on the value in the results 
column, this metric would classify the file as “Politics”.  The next 
highest value will classify it as a “World” file. Finally, the 3rd 
highest value is the correct “Opinion” class. In this case   

Equation (6) shows an example of how attempts to classify is 
calculated for the results of the frequency metric. For this 
experiment, there were 297 total files in the test set and the metric 
misclassified as many as 8 times. Based on the equation in (6), the 
average number of times it took for the frequency metric to 
correctly classify an “Opinion” file was 3.09.	

 

Table 5: Example Result for single TF*IDF Measure – 3 
attempts to classify a file from the Opinion class 

Class Results 
Business 0.00033924 
Health 0.00025056 
Justice 0.00027728 
Living 0.00027807 
Opinion 0.00041936 
Politics 0.00046704 
Showbiz 0.00023136 
Sport 0.00028422 
Tech 0.00025991 
Travel 0.00021793 
US 0.00032973 
World 0.00043251 

 

 

 

 

 

(4) 

MAX 

Max 

2nd Max 

3rd Max 

It takes 3 
tries to get it 
right 

108 © 2017 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY



 

 

Example: Worst Class – Opinion 

 
P1 = 3 

       P2 = 35 x 2 

      P3 = 31 x 3 

      P4 = 14 x 4 

 P5 = 7 x5 

 P6 = 3 x6 

 P7 = 2 x 7 

 P8 = 1 x8 

(6) 

Part V: 

Create the confusion matrices to determine the accuracy of each of 
the 112 TF*IDF measures: 

1. Each TF*IDF measure classifies a file or document set as one 
of 12 classes (from business to world). The confusion matrix 
is constructed by creating a two-dimensional matrix wherein 
both the columns and rows are representations of the classes, 
as seen in table 4 below. The rows represent the “true” class, 
while the columns represent the class chosen by the 
classification algorithm described above.  

 

 

Table 5: Example Confusion Matrix for 3 classes 

Normalized 
Confusion Matrix 

Classifier Output (Computed 
Classification) Prediction 

A B C 

True Class 
of Samples 
(Input) 

A 0.94 0.03 0.03 

B 0.08 0.85 0.07 

C 0.08 0.04 0.88 

 

1.1. Table 6 shows an actual confusion matrix for a single 
TF*IDF. The highlighted diagonal in the table shows 
how well the example TF*IDF measure performs on all 
12 classes. The cells contain the number of files in the 
test set classified into the classes named by the 
columns.  

1.2. In the case of the reported experiment there are a total 
of 49 files in each class. In the confusion matrices for 
the 112 TF*IDF measures the rows sum to 49 since the 
left column represents the actual class from which the 
document is taken. The columns have a mean of 49 with 
some variance depending on whether the class in the 
column is an attractor class (> 49) or a repulsor class 
(< 49).  

2. Determine the accuracy of the TF*IDF measure divide the 
sum of values in the diagonal by the total number of files in 
all test files for all classes: 

 

ݕܿܽݎݑܿܿܣ ൌ 	
∑ሺܽଵ,ଵ …ܽ௡,௡ሻ

∑ ௡஼௟௔௦௦௘௦ݏ݈݂݁݅݊
௜ୀଵ

൘             (7) 

3. Sort the TF*IDF measures by accuracy from highest to lowest 
accuracy and set a minimum accuracy to identify a subset of 
the 112 TF*IDF measures that best classify the files. 
 
   

Part VI: 

1. Once the TF*IDF measures are sorted by accuracy and the 
subset of measures that meet the minimum requirement are 
identified, this subset can be used by adding the accuracies of 
all possible combinations of the measures in the subset. This 
allows us to determine whether we can get better accuracy 
than any one single equation and to determine if there is a 
maximum accuracy that can be obtained by combining the 
results using combination: 

                                       ቀ
݊
݇ቁ ൌ

௡!

௞!ሺ௡ି௞ሻ!
                            (8) 

 

 Table 6 shows, in general, how values are calculated. Each 
combination number represents a single TF*IDF measure. For 
example, “1+2” in the “Combinations” column represent the sum 
of the accuracies for TF*IDF equations 1 and 2, where 

Equation 1 =  TF_Log*IDF_LogOfSums and  

Equation 2 = TF_Log*IDF_Mean. 

 

Table 7: Example Combinations of TF*IDF Measures 

TF*IDF 
Combinations 

Combinations 

2 From:  1+2, 1+3, 1+4…    
To:       n-1, n 

3 From:   1+2+3, 1+3+4…  
To:        n-2 ,n-1, n 

⋮ ⋮ 
k From:   1+2+3…+k,  

To:        n-k,…,n-1, n 

 

 

∑
=297/96 = 3.09 

 

109ARCHIVING 2017 FINAL PROGRAM AND PROCEEDINGS



 

 

Results 

Identifying TF*IDF Measures for Classification 

While we ran the experiment using all 112 TF*IDF measures, 
table 8 shows the accuracy for twelve measures only. The 
minimum cut off used for performance was 0.34, or an accuracy of 
34% in the confusion matrix, and only twelve measures were 
above that minimum. Additional minimums were experimented 
with, but it was found that even a small drop to 30% identified 15 
more equations, bringing the number up to 27 equations. As will 
be seen in the section on combining results, using all possible 
combinations of 27 equations greatly increases the processing time 
without adding any accuracy. 
 Recall that the ground truth for these experiments is the 
classification provided by tags originally assigned by CNN. One 
conclusion that might be drawn from table 8 is that none of the 
TF*IDF measures classify all the classes with high accuracy. 
However, the confusion matrices tell us that they perform much 
better on some classes than others.  For example, table 6 shows 
that TF*IDF 1 (TF_Log_IDF_LogOfSums) actually classifies 
documents into specific classes much better than the maximum 
45% shown in table 8.  In fact, for the “Sports” category, TF*IDF 
1 (TF_Log_IDF_LogOfSums) classifies a real sports document 
65% correctly. If most of the 112 measures correctly classify most 
of the documents in a given class, but incorrectly classify most of 
the documents in a different class, it may be that the class itself 
was not classified well to begin with. 
 Another thing to notice about these results is the actual 
measures themselves. Table 9 includes the names, from which we 
are able to identify that only half of the defined TFs show up in the 
top 12. TF_Log makes 7 out 12 of the TF half of the best 
performing equations. TF_NormLog, TF_NormLogs, occur only 
twice, while TF_Mean appears only once.  There is greater 
variability for the IDF portion of the winning metrics. 
IDF_NormSumsOfPowers shows up 4 times, 
IDF_NormPowersOfSums occurs 3 times; and 
IDF_NormLogOfSums, IDF_NormMean, 
IDF_NormPowerOfSums, IDF_Mean, and IDF_LogOfSum all 
occur only once. 
 

Table 9: Top 12 TF*IDF Measures for Classification 

TF*IDF Equation TF*IDF 

NUM 

Accuracy 

TF_Log_IDF_NormLogOfSums 2 0.4473 

TF_Log_IDF_NormMean 4 0.4388 

TF_NormLogs_IDF_NormSumsOfPowers 52 0.4099 

TF_NormLog_IDF_NormSumsOfPowers 38 0.4082 

TF_Log_IDF_NormSumsOfPowers 10 0.4048 

TF_Log_IDF_NormPowerOfSums 5 0.3639 

TF_Log_IDF_NormPowersOfSums 6 0.3622 

TF_Mean_IDF_NormSumsOfPowers 24 0.3622 

TF_NormLogs_IDF_NormPowersOfSums 48 0.3622 

TF_NormLog_IDF_NormPowersOfSums 34 0.3605 

TF_Log_IDF_Mean 1 0.3588 

TF_Log_IDF_LogOfSum 0 0.3401 

Mean Attempts to Classify 
Another way to measure how effective a particular TF*IDF 

measure is in classifying a document is to look at how many 
incorrect classifications occur before the correct class is chosen. As 
described above, the “mean attempts to classify” counts how 
incorrect classes are chosen by the metric before the correct class 
is chosen. For 112 TF*IDF, we kept track of the classification of 
each file. Table 10 contains a snippet from the entire table of 112 
results showing 21 measures. We used a cut-off mean attempt 
value of 2.5 attempts.  Table 11 shows the names of the measures 
for comparison to table 9 above. 
 One thing to notice when comparing tables 9 and 11 is that 
not every equation that appears in the Accuracy (table 9) appears 
near the top of the Mean Attempts to Classify (table 11) table. In 
fact, only 7 of the twelve in table 9 appear in table 11.  The 
measure with the highest accuracy does not even appear in table 
11. The reason for this can be seen by looking at table 10. For 
example, if we look at TF*IDF measure 2, which has the highest 
accuracy (TF_Log_IDF_NormLogOfSums), table 10 shows that 
whereas it finds the correct class on the first attempt 8 out of 12 
times, those instances where it did not find the correct class took as 
long as 5 or even 10 attempts before finding it. If we look at the 
other measures such as 5 or 6 in table 10, we see that the highest 
number of attempts to classify is 3 and that occurred for a single 
class.  
Table 11: Mean Attempts to Classify – Cut off value < 2.0 

TF*IDF Equation TF * 
IDF 
Num 

Mean 
Attempts 
to 
Classify 

TF_Log_IDF_NormPowerOfSums 5 1.25 

TF_Log_IDF_NormPowersOfSums 6 1.25 

TF_Mean_IDF_NormPowersOfSums 20 1.25 

TF_NormLogs_IDF_NormPowersOfSums 48 1.33 

TF_Mean_IDF_NormSumsOfPowers 24 1.67 

TF_NormLog_IDF_NormPowersOfSums 34 1.67 

TF_Power_IDF_NormSumsOfPowers 108 1.67 

TF_Log_IDF_NormMean 4 1.75 

TF_Power_IDF_NormLogOfSums 100 1.75 

TF_Log_IDF_NormSumsOfPowers 10 1.92 

TF_Power_IDF_NormMean 102 1.92 

TF_Power_IDF_NormPowersOfSums 104 1.92 

 

110 © 2017 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY



 

 

Combinations of the top 12 Accuracy TF*IDF Measures 
The final aspect of this series of experiments looks at ways to 

increase accuracy using these measures. While there much more 
sophisticated ways of combining these metrics using meta- 
algorithms [15], we focus here on a simple combination using the 
sum of the accuracies. In the interest of brevity, we focus here only 
on the twelve reported in table 9.   
 Table 12 contains information on how many sets of 
combinations were looked at and the total number of combinations 
each set contains. As can be seen from the table, up to 924 
combinations using 6 TF*IDF metrics can be generated and the 
total number of unique combinations is 4, 082 just from the twelve 
metrics shown.  
 Figure 1 shows the results for accuracy when the 
combinations are applied for each class. There are a few very 
interesting things to be seen just from looking at the graph. First, 
there is a large gap between three of the classes and the remaining 
9. In general, the classes “Opinion”, “Travel”, and “Living” have 
been consistently shown to be difficult to classify correctly by all 
of the measures. Even when combining the highest accuracy 
metrics the best accuracy we can achieve is about 30.6%. For the 
rest of the classes, combination accuracy is much higher with the 
maximum value at 88%, with an average for the upper 9 of 77%. 
 Another interesting result that can be seen from figure 1 is 
that even a combination of twelve metrics is overkill. With the 
exception of the “Tech” and “Showbiz” classes, which don’t 
benefit at all beyond a combination of two measures, all the 
remaining combination accuracies plateau by time 4 accuracy 
results are combined.  
 
Table 12: Combinations of TF*IDF Measures 

TF*IDF 
Combin-
ations 

Total 
Number of 
Combin-
ations 

Combinations 

2 66 
From:  1+2     
To:       11+12 

3 220 
From:   1+2+3  
To:  10+11+12 

4  495 
From: 1+2+3+ 4  
To: 9+10+11+12 

5 792 
From: 1+2+3+ 4+5  
To: 8+9+10+11+12 

6 924 
From: 1+2+3+ 4+5+6 
To: 7+8+9+10+11+12 

7 792 
From: 1+2+3+ 4+5+6+7 
To: 6+7+8+9+10+11+12 

8 495 
From: 1+2+3+ 4+5+6+7+8 
To: 5+6+7+8+9+10+11+12

9 220 
From: 1+2+3+ 4+5+6+7+8+9 
To: 4+5+6+7+8+9+10+11+12

10 66 
From: 1+2+3+ 4+5+6+7+8+9+10 
To: 3+4+5+6+7+8+9+10+11+12

11 12 
From: 1+2+3+ 4+5+6+7+8+9+10+11 
To: 2+3+4+5+6+7+8+9+10+11+12

 

Discussion and Conclusions 

Our goal is determine whether a single metric or a combined 
set of metrics defined by a series of TF*IDF equations might work 
well as classifiers for news articles, such as that found in the CNN 
corpus. We described the algorithms used and the results of our 
experiments show promise. With a copy of the CNN corpus, it 
should be straightforward to reproduce the results described herein. 

We have described how we used 112 TF*IDF equations to 
classify 588 CNN articles into a set of 12 classes. Along the way, 
we found that while no single TF*IDF could accurately classify all 
the documents, by combining the individual accuracies of several 
metrics we could at least attain a 63% accuracy and higher for 9 of 
the twelve classes. For the other three classes, the low performance 
of all 112 TF*IDF indicates a problem with the original 
classification (by CNN) in general. It could be that “Living”, 
“Opinion”, and “Travel” contain words that are too generic for 
pinpointing the appropriate class.  As a result, we believe this 
approach can also be used to identify improper sets of class 
definitions. We also discovered that in reality, only 4 combinations 
of the top 12 most accurate TF*IDF classifiers are needed to 
maximize the accuracy of the classification.  

While this research focuses on the twelve classes found in the 
CNN Corpus, we wish to re-run the experiments using additional 
corpora, such as the New York Times Annotated Corpus [16] 
which contains articles written and published by the New York 
Times between January 1, 1987 and June 19, 2007. It contains 
metadata provided by the New York Times Newsroom, the New 
York Times Indexing Service and the online production staff at 
nytimes.com. Specifically it has over 1.8 million articles, over 
650,000 article summaries written by library scientists, over 
1,500,000 articles manually tagged by library scientists with tags 
drawn from a normalized indexing vocabulary of people, 
organizations, locations and topic descriptors, and over 275,000 
algorithmically-tagged articles that have been hand verified by the 
online production staff at nytimes.com This comprehensive data 
set should provide more accurately ground-truthed information and 
is actually quite promising for taking this research forward.  

We also plan to apply a set of meta-algorithms [15] using 
both the raw TF*IDF scores as well as the accuracy results to 
determine whether we can create a stable set of classifiers for any 
classification of documents, including the CNN Corpus as well as 
the New York Times Annotated Corpus.  

 

References 
[1] Levinson, S.1983. Pragmatics. Cambridge University Press, New 

York, NY.  

[2] Gerard Salton and Christopher Buckley, Term-Weighting Approaches 
in Automatic Text Retrieval, Information Processing and Management 
24.5 (1988): 513-23.  

[3] Stephen Robertson, Understanding inverse document frequency: on 
theoretical arguments for IDF, Journal of documentation 60.5 (2004): 
503-520. 

[4] C. Manning and H. Schütze, Foundations of Statistical Natural 
Language Processing. MIT Press, Cambridge, MA, (1999).  

[5] Kishore Papineni, Why inverse document frequency?, Proceedings of 
the second meeting of the North American Chapter of the Association 

111ARCHIVING 2017 FINAL PROGRAM AND PROCEEDINGS



 

 

for Computational Linguistics on Language technologies, Association 
for Computational Linguistics, (2001). 

[6] K.L Kwok, Experiments with a component theory of probabilistic 
informational retrieval based on single terms as document 
components. ACM Transactions on Information Systems, 8(4). 
(1990), Pp. 363-386. 

[7] J. Ramos, Using tf-idf to determine word relevance in document 
queries, Proceedings of the first instructional conference on machine 
learning (2003). 

[8] S. Karbasi, and M Boughanem, Effective level of term frequency 
impact on large-scale retrieval performance: by top-term ranking 
method, Proceedings of the 1st international conference on Scalable 
information systems, ACM (2006), pp, 37. 

[9] Ari A. Hakin, Alva Erwin, Kho Eng, Maulahikmah Galinium, and 
Wuliady Muliady, Automated Document Classification for News 
Article in Bahasa Indonesia based on Term Frequency Inverse 
Document Frequency (TF-IDF) Approach, Proceedings of the 6th 
International Conference on Information Technology and Electrical 
Engineering (ICITEE), Yogyakarta, Indonesia, IEEE, (2014),  pp 1-4. 

[10] Giacomo Domeniconi, Gianluca Moro, Roberto Pasolini, and Claudio 
Sartori, A Comparison of Term Weighting Schemes for Text 
Classificaiton and Sentiment Analysis with a Supervised Variant of 
tf.idf, International Conference on Data Management Technologies 
and Applications, Springer International Publishing, (2015), pp. 39-58. 

[11] Youngjoong Ko, A Study of Term Weighting Schemes Using Class 
Information for Text Classification, Proceedings of the 35th 
international ACM SIGIR conference on Research and development in 
information retrieval, ACM, (2012), pp. 1029-1030. 

[12] Bruno Trstenjak, Sasa Mikac, and Dzenana Donko, KNN with TF-IDF 
Based Framework for Text Categorization, Procedia Engineering 69 
(2014): 1356-1364. 

[13] CodePlex. 2013. SharpNLP – open source natural language 
processing tools. Retrieved from https://sharpnlp.codeplex.com/#.  

[14] Lins, R.D., Simske, S.J., Cabral, L., Silva, G., Lima, R., Mello, R.F. 
and Favaro, L. (2012, July). A multi-tool scheme for summarizing 
textual documents. In Proceedings of 11st IADIS International 
Conference WWW/INTERNET 2012.  pp. 1–8. 

[15] Marie Vans and Steven Simske. Summarization and Classification of 
CNN. com Articles using the TF* IDF Family of Metrics, Archiving 
Conference, vol. 2016, no. 1, Society for Imaging Science and 
Technology, (2016), pp. 21-23.  

[16] Steven J. Simske, Meta-algorithmics: patterns for robust, low cost, 
high quality systems. John Wiley & Sons, 2013. 

[17] New York Times Annotated Corpus, Linguistic Data Consortium 
(LDC), https://catalog.ldc.upenn.edu/LDC2008T19, Accessed 
September 13, 2016. 

 

Author Biography 
Marie Vans is currently a Research Scientist with Hewlett-Packard Labs in 
Fort Collins, Colorado. Her main interests are security printing and 
imaging for document workflows, statistical language processing, and 
other approaches to document understanding. She holds a Ph.D. in 
Computer Science from Colorado State University. She also recently 
completed a second master’s degree in Library and Information Science at 
San José State University. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

112 © 2017 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Business  Health  Justice  Living Opinion Politics Showbiz Sport Tech  Travel  US  World TTL

Business  18  2  2  0  1  3  9  3  4  0  3  4  49 

Health  1  19  4  0  0  4  8  1  1  0  5  6  49 

Justice  1  1  26  0  0  5  6  4  1  0  4  1  49 

Living  2  3  8  1  2  4  17  3  2  0  4  3  49 

Opinion  7  4  4  0  7  9  4  4  0  0  3  7  49 

Politics  2  3  9  0  1  19  4  2  2  0  4  3  49 

Showbiz  2  2  3  1  0  6  27  5  0  0  2  1  49 

Sport  0  1  5  0  0  1  9  32  0  0  0  1  49 

Tech  5  5  4  2  3  1  6  4  16  0  1  2  49 

Travel  5  5  3  1  2  4  8  6  1  3  5  6  49 

U.S.  0  1  9  0  0  9  10  2  4  0  11  3  49 

World  3  1  5  0  1  5  3  5  2  0  3  21  49 

                           

TTL  46  47  82  5  17  70  111  71  33  3  45  58  588 

 

Table 8: Confusion Matrix for 1 TF*IDF Measure: TF_Log_IDF_LogOfSums. Numbers represent number of files 
identified in each class. Highlighted diagonal represents the number of correctly classified files for each class by 

this measure. 

113ARCHIVING 2017 FINAL PROGRAM AND PROCEEDINGS



 

 
 
 
 
 

 

 
 
 
 
 

 

TF/IDF 
Num  Business  Health  Justice  Living  Opinion  Politics  Showbiz  Sport  Tech  Travel  U.S.  World  TTL 

Mean 
Attempts 
to Classify 

                             
               

5  1  1  1  1  2  1  1  1  1  3  1  1  15  1.25 

6  1  1  1  1  2  1  1  1  1  3  1  1  15  1.25 

20  1  1  1  1  3  1  1  1  1  1  2  1  15  1.25 

48  1  1  1  1  2  1  1  1  1  4  1  1  16  1.33 

24  1  1  1  2  3  1  1  1  1  5  2  1  20  1.67 

34  1  1  1  1  3  1  1  1  1  7  1  1  20  1.67 

108  1  2  1  5  1  1  1  1  1  2  2  2  20  1.67 

4  1  1  1  2  4  1  1  1  1  6  1  1  21  1.75 

100  1  2  1  4  2  2  1  1  1  2  2  2  21  1.75 

10  2  1  1  1  4  1  1  1  1  8  1  1  23  1.92 

102  1  2  1  5  2  1  1  1  1  3  2  3  23  1.92 

104  1  2  2  6  2  1  1  1  1  2  2  2  23  1.92 

38  1  1  1  1  4  1  1  1  1  10  1  1  24  2 

52  1  1  1  1  4  1  1  1  1  10  1  1  24  2 

105  1  2  1  5  2  2  1  1  1  3  2  3  24  2 

103  1  2  2  7  3  1  1  1  1  3  2  2  26  2.17 

1  1  1  1  5  4  1  1  1  1  10  1  1  28  2.33 

106  1  2  1  8  3  1  1  1  1  5  2  2  28  2.33 

2  1  1  1  5  5  1  1  1  1  10  2  1  30  2.5 

99  1  1  1  2  3  1  1  1  1  11  6  1  30  2.5 

100  1  1  1  2  3  2  1  1  1  11  5  1  30  2.5 

Table 10: Mean Attempts to Classify – Cut-Off Value = 2.5 attempts 

114 © 2017 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T F _ I D F  
C O M B O  

( 2 )

T F _ I D F  
C O M B O  

( 3 )

T F _ I D F  
C O M B O  

( 4 )

T F _ I D F  
C O M B O  

( 5 )

T F _ I D F  
C O M B O  

( 6 )

T F _ I D F  
C O M B O  

( 7 )

T F _ I D F  
C O M B O  

( 8 )

T F _ I D F  
C O M B O  

( 9 )

T F _ I D F  
C O M B O  

( 1 0 )

T F _ I D F  
C O M B O  

( 1 1 )

PE
RC

EN
T 

CO
RR

EC
T 

-B
Y 

CL
AS

S

ALL POSSIBLE COMBINATIONS OF 12 TOP PERFERFORMAING TF*IDF MEASURES

P E R C E N T  C O M B I N A T I O N S  C O N T A I N I N G  A T  L E A S T  1  C O R R E C T  C L A S S I F I C A T I O N  F O R  
C O M B I N A T I O N S  O F  T H E  T O P  1 2  T F * I D F  M E A S U R E S

Percent Correct -
World
Percent Correct - US

Percent Correct -
Travel
Percent Correct -
Tech
Percent Correct -
Sport
Percent Correct -
Showbiz
Percent Correct -
Politics
Percent Correct -
Opinion
Percent Correct -
Living
Percent Correct -
Justice
Percent Correct -
Health

Figure 1. Percent Correct Classifications for combinations of the top 12 TF*IDF Measures 

 

115ARCHIVING 2017 FINAL PROGRAM AND PROCEEDINGS


