
Simple Image Presentation Interface (SIPI) – an IIIF-based
Image-Server
Lukas Rosenthaler, Peter Fornaro, Andrea Bianco and Benjamin Geer; Digital Humanities Lab, University of Basel; Basel; Switzer-
land

Abstract
The International Image Interoperability Framework

(IIIF) [1] is a widely accepted and fast growing standard to
present images as web-resources. The IIIF-standard defines an
URL-syntax to access, transform and reformat the desired image.
An IIIF-server converts the image on-the-fly based on the desired
parameters and transfers the image using the HTTP protocol to
the client. We designed and implemented an advanced, extremely
flexible, fully IIIF compliant server in C++11 offering advanced
features that go beyond the IIIF standard. Due to its flexibility,
can easily be integrated into existing environments and thus
facilitates the transformation of existing archiving platforms to
support the IIIF protocol.

Introduction: Images and the Internet
On Feb. 26th 1993, Marc Andreessen, co-author of Mosaic

(the first widely used Web browser) and co-founder of Netscape,
proposed in a message to a mailing list a new HTML-tag IMG
with a mandatory attribute src=”url” as follows:

This names a bitmap or pixmap file for the browser
to attempt to pull over the network and interpret as an
image, to be embedded in the text at the point of the
tag’s occurrence.
Browsers should be afforded flexibility as to which im-
age formats they support. Xbm and Xpm are good ones
to support, for example. If a browser cannot interpret
a given format, it can do whatever it wants instead (X
Mosaic will pop up a default bitmap as a placeholder).
[2]

This proposal which found wide acceptance allowed for the first
time to display images in a web browser. Since then, images
have become an indispensable part of the internet. The revolu-
tionary idea of Andereessen has been to address an image like
any other resource in the internet using an URL. It’s up to the web
client (e.g. the browser) to fetch the image and display it. The
HTTP-protocol header Content-type allows the server to send the
MIME-type in order to allow the client to render the image prop-
erly. Soon after the introduction of the tag, support for
the GIF-format[5] for graphic-like images and the JPEG-format
for photographic images has been implemented in most browser.
Since JPEG allows an efficient (but lossy) compression of im-
age data, it was especially well suited for high resolution photo-
graphic images, since the data compression reduced the loading
times over the – at that time rather slow – internet connections. It
is to note that the URL within an tag usually only refer-
ences a specific image as a static resource with a given resolution,
format and quality. After the image has been loaded completely,

modern browser allow some scaling and – using tricky HTML and
CSS code – some cropping of the loaded image.

Nevertheless, images became an integral part of the internet
and soon special purpose web-based image databases began to
surface. At the same time, the progress of digital image capture
technology started to rival and surpass analogue photography in
ease of handling and image quality. Today digital photography
has almost completely replaced analogue photography in muse-
ums and archives. The processed (e.g. cropped, contrast and color
corrected) high resolution, high quality digital images have to be
considered digital master copies that have to be preserved with
longevity in mind.

Given the limitations of the image tag and the typical web-
server/web-browser functionality, it became necessary for image
databases to store and manage several derivatives of the master
copy representing different resolutions, qualities and possibly for-
mats (usually just the JPEG format is accessible on the web). This
makes web based image databases rather complex, inflexible and
requires the storage of multiple copies of the same image in dif-
ferent representations. In addition the user has only access to a
limited, predefined set of image variants.

The International Image Interoperability
Framework IIIF

Digital images have become an important part in research
both in science as well as in the humanities. While in science
most image interpretation is performed by computational meth-
ods such as statistical image classification, pattern recognition al-
gorithms etc., the nature of digital images in humanities is quite
different. Many images in the humanities depict cultural artifacts
such as paintings, sculptures, documentary photographs etc.. An-
other significant class of digital images in the humanities repre-
sent written texts, especially manuscripts. Scholars working with
ancient papyri or medieval codices, but also those working on crit-
ical editions in literature or science depend on access to the orig-
inal manuscripts. Sometimes these original texts have been taken
apart and the fragments are dispersed all over the world – as it
is especially the case for some medieval manuscripts. Many of
these fragments have been digitized and are available on the in-
ternet. However, there has been a strong need to have a standard
way to access these images and make them available for research
in a very flexible way. Out of this community the IIIF emerged
as a standardized way to address images or parts thereof using a
flexible URL syntax. This allows to compare and assemble im-
ages from different places in the world in a common way and to
develop new research tools.

Thus, the goal of the IIIF standard is to enable the sharing
of digital images using the Linked Open Data (LOD) principles

28 © 2017 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

https://doi.org/10.2352/issn.2168-3204.2017.1.0.28
© 2017; Society for Imaging Science and Technology

in the field of cultural heritage humanities research. It has been
conceived by a large consortium of serious players in the field of
cultural heritage and research institutions such as ARTstore, the
British Library, Harvard University, to name a few. There are also
many web-based viewers available that are capable of displaying
high-resolution images using tiling that is supported by the IIIF
server.

IIIF Standard
The IIIF standard defines a standardized API on how to ad-

dress images using the well known URL syntax. In addition,
it also provides a standardized way to access essential metadata
about digital images. The basic syntax to access an image itself is
as follows:

{scheme}://{server}{/prefix}/{identifier}/

{region}/{size}/{rotation}/{quality}.{format}

where {scheme} is either ”http” or ”https”, {server} the DNS
name of the service, {prefix} a service-specific name which can
be used to order collections etc., {identifier} the image identi-
fier. The IIIF-standard does not impose a special formatting of
the image identifier. It may be a number, an archiving signature, a
filename etc. {region} allows to select a rectangular region (e.g.
”region of interest”) of the image. {size} allows to select the size
(in pixels or percentage) that the selected region should be ad-
justed to. The {rotation} parameter allows to give an arbitrary
rotation and/or mirroring of the selected part of the image. For
both {region} and {size} the keyword ”full” indicates to transmit
the full image at full resolution. {quality}allows to select B/W,
gray and color rendering, while {format} indicates the file format
that should be used. Currently the standard includes JPEG (.jpg),
TIFF (.tif), PNG (.png), GIF (.gif), JPEG2000 (.jp2), PDF (.pdf)
and WEBP (.webp).

The server dynamically responds to such a request, prepares
the image from a master image according to the specification
given on the URL and sends the data using the HTTP protocol.
The IIIF standard does not imply a specific implementation of the
server or on how the different derivative images are being gen-
erated. There are several servers available that either natively
support the IIIF V2.0 standard or offer some protocol translation
tools1. However, most of these image servers do have some seri-
ous drawbacks.

IIIF and JPEG2000
Since there are almost unlimited variants of an image that

can be requested using the IIIF-syntax, a IIIF compliant image
server has to be able to calculate ”on the fly” the required variant.
Therefore IIIF servers typically store only one high resolution,
high quality (master-) image from which the required image vari-
ant is dynamically derived. It is obvious that these image transfor-
mations have to be performed with very high efficiency in order
to guarantee acceptable response times. Using the JPEG2000 for-
mat as server-side master format has several crucial advantages
compared to other image formats:

• it has a lossless compression mode and supports images with
16 Bit depth. Thus it can store true master images.

1The IIIF website lists some of the most prominent compliant servers.
See http://iiif.io/apps-demos/#image-servers

• using internally a resolution pyramid, access to lower res-
olutions is highly efficient. Given proper compression pa-
rameters, eventually only a fraction of the (usually quite big)
master file has to read.

• JPEG2000 supports tiling which makes the selection of re-
gion of interests very efficient.

Therefore most IIIF servers support JPEG2000 as master image
file format. However, software support for JPEG2000 is quite
hard to find. The few open source implementations of JPEG2000
available do have performance problems. Some IIIF servers rely
on the binary distribution of a compression/decompression tool
by kakadu-software [4]. While these tools offers a wide variety
of compression parameters and options, support for other features
such as metadata, different file formats etc. is rather poor. How-
ever, the code is highly efficient and even supports multithreading.

Why is ”yet another IIIF server” needed?
By a mandate of the State Secretariat for Education, Re-

search and Innovation (SERI), the Swiss Academy of Humani-
ties and Social Sciences (SAHSS) has created a new institution
for the preservation and long-term curation of research data in
the humanities, the ”Data and Service Center for the Humanities”
(DaSCH)2. It is insuring permanent access to research data in or-
der to make it available for further research. A pilot started in
2013 and has been successfully finished. The DaSCH has been
permanently installed on January 1st 2017. The Digital Humani-
ties Lab (DHLab)3 of the University of Basel has been mandated
with the operation of the new institution. For this purpose, it de-
veloped a flexible research platform based on semantic web tech-
nologies (RDF, RDFS, OWL) [3]. Besides text sources, about
500’000 high-resolution images have been ingested to the system
during the pilot phase. Together with annotations, internal and
external linkage etc. this results in approx. 50 Mio. RDF-triples.
We decided recently to use IIIF for presenting the images in order
to maximize the interoperability with external systems. Further-
more, we need to preserve only one image file, since IIIF allows
using the archiving master also for dissemination and presenta-
tion.

However none of the existing IIIF-compliant servers satisfied
our demanding requirements that are:

• Interoperability with external databases (e.g. the RDF-
triplestore) containing annotations, metadata etc. as well as
access permissions.

• Preservation of all embedded metadata (e.g. EXIF, IPTC,
XMP, TIFF etc.) during all format conversions.

• ICC color profile conversions where necessary.
• User authentication using JSON Web-Tokens (JWT) or a

similar scheme that is compatible with current IIIF standard
for authentication [6]

• High-performance transformation of images including rota-
tion, format conversions for 16 bit and 8 bit images.

• Support of Secure Socket Layer (SSL/https).
• Configurable image cache in order to reduce the computa-

tional load on the server.
• Support of cross origin resource sharing (CORS)

2see dasch.swiss
3See http://dhlab.unibas.ch

29ARCHIVING 2017 FINAL PROGRAM AND PROCEEDINGS

http://iiif.io/apps-demos/#image-servers
dasch.swiss
http://dhlab.unibas.ch

• Import and transformation of images. The server must be
able to import (upload) images and convert them to the de-
sired master file format (in our case JPEG2000).

• Features beyond the scope of the IIIF-standard such as
adding watermarks, size restrictions etc.

• Integrated simple web server functionality
• modular extensibility, e.g. integrating support for RTI imag-

ing (both initial transformation and serving a web-based
RTI-viewer) [7] [8]

None of the existing IIIF compatible image servers comes close
to these requirements, so we decided to create our own, fully IIIF
compliant image server.

Implementation of the Simple Image Presen-
tation Interface SIPI

In a first step, some fundamental decisions regarding the im-
plementation had to be taken. Our starting point was as follows

SIPI Design Principles
• SIPI must run primarily on Linux and related systems (e.g.

BSD Unix, MacOS).
• The basic functionality (image decoding and encoding, im-

age manipulation, HTTP server etc.) has to be implemented
using a compiled language in order to get the required per-
formance. We decided to use C++11 as basic implementa-
tion language

• In order to allow a flexible configuration and adaption to
different ecosystems, a script language should to be embed-
ded. We decided to use Lua [9] which is widely used in the
gaming world (e.g. World of Warcraft) because of its small
footprint and high performance. Lua is especially designed
to be embedded into other applications.

• The server should store one master file using lossless
JPEG2000 compression. Since the available open source
JPEG2000 libraries are not satisfying regarding perfor-
mance, we decided to use the – unfortunately not free –
kakadu implementation of JPEG2000 [4]. Kakadu dis-
tributes the full source code to the licensees and allows
the binary distribution of programs using the kakadu code
(given the proper license), but it prohibits the distribution of
the kakadu library itself as binary file4.

• SIPI should be made available as open source based on the
GNU Affero General Public License 3.0 [10]. The code is
to be publicly available on github.com (https://github.
com/dhlab-basel/Sipi).

SIPI Architecture
SIPI is written in C++11 und thus requires at least gcc 5.3 or

clang 8.0. As build-system we decided to rely on Cmake (version
3.0 or later) in order to make the building to some degree inde-
pendent of the used linux variant. SIPI depends on several third
party (open source) libraries. With some noted exception, specific
versions are downloaded and compiled locally during the build
process, but not installed globally. Since some library versions
may be in conflict with already installed libraries, we decided to

4However the license price tag is very reasonable for public institutions
so we do not regard this restriction as a major hurdle for using SIPI in other
institutions

prefer static compilation which does not require the installation of
shared libraries. In order to read and write different file formats,
we are using the following libraries:

• TIFF: libtiff-4.0.7
• JPEG: libjpeg-v9b
• PNG: libpng-1.6.27
• JPEG2000: kakadu-7.95

In order to interpret the various metadata formats, the following
libraries are used:

• EXIF, IPTC, XMP: exiv2-0.25
• ICC: lcms2-2.8 (little CMS V2)

Other important libraries used are:

• Lua interpreter: lua-5.3.1
• Sqlite3: sqlite-autoconf-3140200
• Curl: curl-7.51.0

Some other helper libraries are also used. All these libraries are
downloaded and compiled locally during the cmake process with-
out global installation on the system. There are only a few excep-
tions, most notably OpenSLL that must be installed systemwide
(for more details refer to the README of SIPI).

The generic architecture is shown in fig. 1. SIPI makes
heavy use of predefined C++11 classes.

Figure 1. Sipi Architecture.

Socket Stream Layer
At the bottom, the socket communication (HTTP connec-

tion) is implemented as a subclass of the C++11 class sockstream
that includes dynamic buffering and optional OpenSLL commu-
nication.

Connection Handler
The connection handler deals with the HTTP protocol in-

cluding chunked transfer. It parses incoming HTTP headers,

5Please note that this library is unfortunately not open source and has
to be licensed!

30 © 2017 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

https://github.com/dhlab-basel/Sipi
https://github.com/dhlab-basel/Sipi

HTTP message bodies (e.g. multipart/form-data or application/x-
www-form-urlencoded formatted bodies) and prepares the appro-
priate data structures. It also assembles and formats outgoing
HTTP messages. To the upper layers it looks like a simple stream
interface and thus hides the complexity of the HTTP protocol
completely. This feature is especially important in order to allow
the image libraries to use the HTTP connection as simple stream.

Server Layer
Simple HTTP Server The server layer implements the basic
control of a web server. It uses multithreading with the max-
imal number of concurrent threads limited in the configuration
file. The server is also responsible for implementing the ”keep-
alive” feature of the HTTP protocol. While each request creates
a new instance of the connection handler, the socket itself may be
kept open according to the keep-alive requirements. The server
layer also creates for each request a new instance of the Lua in-
terpreter. Having for each request a new instance of the Lua in-
terpreter eliminates the risk of security breaches within Lua (e.g.
data remaining accessible between requests). Since the Lua inter-
preter is very small and efficient, the instantiation of a new Lua
interpreter for each request is justifiable and does not degrade per-
formance significantly. The embedded Lua is enhanced with some
special commands, e.g. to read and send data using the HTTP
connection, RESTful API’s etc. (see SIPI documentation). Us-
ing the curl library, Lua is also able to act as a HTTP client and
query other servers. This enables SIPI to communicate with exist-
ing frameworks given the offer a (possibly RESTful) API. Finally
the server layer implements a simple but complete, small foot-
print web server which is able to transmit static files through user-
definable routes. In addition dynamic content can be created using
Lua-code embedded in HTML. A file with the extension ”.elua”
may contain arbitrary Lua code inbetween <lua>?</lua>tags.

The HTTP server also supports HTTP POST requests with
”multipart/form-data”, if an appropriate route is configured. Thus
image uploads are possible using only the SIPI. Authentication
etc. of uploads are provided using Lua.

IIIF Pre-Flight Script If the server receives IIIF compliant re-
quest, it will first execute a site specific Lua script (defined in
the configuration) which must either return ”allow”, ”restrict” or
”deny”. In case of ”allow”, it also returns the path to the master
file, which is then sent as requested. If the pre-flight script returns
”restrict”, it must, in addition to the path to the master file, also
return either a path to a watermark file or a maximum image di-
mension. Then either the watermark is applied to the image file
or the image size is restricted to the given value. SIPI-Lua and
the server layer also implement JSON web tokens (JWT) [12] for
authentication. Thus, during the pre-flight execution, JSON web
tokens may be examined, databases may be queried (e.g. Sqlite3
is embedded into SIPI) or external frameworks may be queried
using HTTP client functions provided by SIPI-Lua. Thus a full
integration into existing frameworks is possible and SIPI can be
used to transform legacy image databases to IIIF conformance.
The server layers also implements CORS6 to facilitate the inte-

6Cross-origin resource sharing (CORS) is a mechanism that allows
resources on a web page to be requested from another domain outside the
domain from which the first resource was served.

gration into complex environments.

Image Layer
The image handler implements all the necessary routines for

image handling. It interprets the IIIF specific parts of the URL,
reads and writes the different file formats from/to disk and the
HTTP connection, manipulates size, region of interest, bit depth,
ICC profiles etc. and is able to transfer the metadata between
the different image formats. Internally the images as well as the
different metadata are represented in a file format agnostic way.
Formatting and embedding of the many kinds metadata into the
different file formats has been a major hurdle because each file
format treats metadata completely different and information about
it is quite hard to get.

Some file formats (e.g. the TIFF format) do not allow the
streaming of the data, since they rely on random access to the
data while reading and writing. In these (and only these) cases, a
memory file is being created and the file is completely written to
memory before sending it to the HTTP connection.

Caching
Since the decoding and encoding of the different file formats

as well as the image manipulations are time and CPU consuming,
a simple image cache has been implemented. It is to note there are
may be many different IIIF compliant URL’s which will result in
the same image to be sent. The IIIF standard defines a canonical
URL which uniquely identifies each image variant. We are using
this canonical URL (which is derived for each request) as index
into a simple map of cached files. In order to determine the use of
the cached file, also the creation times of the original file and the
cached version is being considered.

If a file is not in the cache or has to be replaced, the cache file
stream is created and handed over to the connection layer which
is responsible to send the data both to the HTTP connection and
the cache file stream (und thus writing the cache filed). Using
this mechanism, a high efficiency and low latency is guaranteed,
since sending the data to the HTTP connection and the disk file
are being done at the same time. The size and maximal number
of files kept in the cache can freely be configured. File deletion is
prioritized by access time. This the file that has not been accessed
for the longest time will be the next to be removed from the cache.

Caching improves the performance of a IIIF based server
significantly. This holds especially true if tiled viewers such as
openseadragon7 or mirador8 are being used on the client side.

Command Line Interface
The server image can also be used as a command line tool to

convert, analyze and manipulate images. Besides file format con-
versions, simple ICC profile manipulations, bit depth conversions
etc. are possible.

Configuration
The many options and configuration parameters are defined

using a Lua configuration script which basically constists of a first
lua object containing the configuration options and of a second lua
object defining the routes. Lua allows a very flexible configura-

7See https://openseadragon.github.io
8See http://projectmirador.org

31ARCHIVING 2017 FINAL PROGRAM AND PROCEEDINGS

https://openseadragon.github.io
http://projectmirador.org

tion since the configuration file is in fact an executable Lua script
with all possibilities given offered by Lua.

Roadmap of SIPI development
In the future SIPI will be extended in several directions.

• We would like to extend SIPI also for providing access to
moving image (video, film).

• RTI imaging9 will be integrated into SIPI.
• We will also extend SIPI to better support the IIIF presen-

tation API and the IIIF search API, given that SIPI is inte-
grated into some kind of database environment.

• We also plan to extend SIPI in a way that digital facsimiles
of manuscripts and there transcription based on TEI [13] can
be integrated.

We hope to build a string open source community around SIPI
which will further enhance the applications and add new features.

Use Case
We are currently using SIPI in a productive environment for

the Data and Service Center for the Humanities (DaSCH). The
DaSCH has two goals: On one hand it preserves the long term ac-
cessibility to research data from the humanities long beyond the
end of a given research project. For example, the results of a criti-
cal edition may still be relevant and important many decades after
the edition project itself endet. On the other hand the DaSCH will
offer a virtual research environment including long term repos-
itory to scholars currently working on research projects. In or-
der to comply with these two goals, we built an infrastructure as
shown in fig. 2. Semantic web technologies (RDF, OWL etc.)

Figure 2. DaSCH Architecture.

are a highly flexible way of representing complex linked data. In
fact, it is allows to simulate virtually all data models (e.g. re-
lational databases, graph databases, key-value stores etc.) using
a single data representation (triple store). However, it does not
make sense to store binary digital objects directly within such a
database. Therefore we decided to use an (extended) IIIF based
server for serving binary objects. Due to reasons of copyright,

9See https://en.wikipedia.org/wiki/Polynomial_
texture_mapping

personal rights etc., not all resources are available as open access
data. Therefore we had to implement some form of user authen-
tication. The web-based formt end of the virtual research system
uses the RESTful API to interact with the knora base system. The
front end then may demand resources from the SIPI server which
either gets the access permissions using a JSON web token or by
querying itself the knora10 middleware.

Currently we host about 25 research projects within our
framework, from the Bernoulli-Euler Online edition to the Lex-
icon Iconographicum Mythologi Antic (http://www.weblimc.
org/search) to the online foto archive of the museum of mod-
ern art ”Kunsthalle” (http://www.salsah.org/kuhaba/. Cur-
rently we are migrating the images to the new SIPI server. To the
end of the year, we expect to host about >0.5 Mio images using
SIPI.

Conclusion
With SIPI we implemented a versatile, high performance

IIIF image server which implements many features that go be-
yond the scope of other IIIF compliant servers. Its rich set of fea-
tures make it especially well suited to be integrated into complex
environments. It’s key features are:

• Fully IIIF compliant
• High performance C++11 implementation
• Preservation of EXIF, IPTC, XMP and TIFF metadata
• Support for ICC color profiles (including some color profile

conversions)
• Support for images with 16 Bit depth
• IIIF compliant authentication using JSON web tokens
• Embedded Lua interpreter and execution of pre-flight script
• Embedded simple web server (incl. file uploads)
• Embedded Sqlite3 database access
• Integrated command line interface for file format conver-

sions

SIPI can be used to create simple standalone image databases or it
can be integrated into complex frameworks and interact with ex-
isting databases and external applications. In all cases is provides
a high performance IIIF conforming access to digital images. SIPI
is currently extensively using within the DaSCH platform.

References
[1] See http://iiif.io
[2] See http://1997.webhistory.org/www.lists/www-talk.

1993q1/0182.html

[3] See https://www.w3.org/standards/semanticweb/
[4] See http://kakadusoftware.com
[5] See https://www.w3.org/Graphics/GIF/spec-gif87.txt
[6] See http://iiif.io/api/auth/1.0/
[7] Peter Fornaro, Andrea Bianco and Lukas Rosenthaler, Digital Materi-

ality with Enhanced Reflectance Transformation Imaging. Archiving
Conference. 19. April 2016 Vol. 2016, no. 1, p. 11-14

[8] Peter Fornaro, Andrea Bianco, Aeneas Kaiser and Lukas Rosen-
thaler, Enhanced RTI for gloss reproduction, in Electronic Imag-
ing, 8 (2017), pp. 66-72, https://doi.org/10.2352/ISSN.

2470-1173.2017.8.MAAP-284

[9] See Seehttp://www.lua.org

10see http://www.knora.org

32 © 2017 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

https://en.wikipedia.org/wiki/Polynomial_texture_mapping
https://en.wikipedia.org/wiki/Polynomial_texture_mapping
http://www.weblimc.org/search
http://www.weblimc.org/search
http://www.salsah.org/kuhaba/
http://iiif.io
http://1997.webhistory.org/www.lists/www-talk.1993q1/0182.html
http://1997.webhistory.org/www.lists/www-talk.1993q1/0182.html
https://www.w3.org/standards/semanticweb/
http://kakadusoftware.com
https://www.w3.org/Graphics/GIF/spec-gif87.txt
http://iiif.io/api/auth/1.0/
https://doi.org/10.2352/ISSN.2470-1173.2017.8.MAAP-284
https://doi.org/10.2352/ISSN.2470-1173.2017.8.MAAP-284
See http://www.lua.org
http://www.knora.org

[10] See https://www.gnu.org/licenses/agpl-3.0.en.html
[11] See https://cmake.org
[12] See https://en.wikipedia.org/wiki/JSON_Web_Token
[13] See http://www.tei-c.org/index.xml

Author Biography
Lukas Rosenthaler is part of the management team of the Digital

Humanities Lab of the University of Basel and has a background in
Physics and Astronomie. His research is focused on virtual research
environments for the Humanities, data modeling using sematic web
technologies, image processing and computer vision. He is the head of
the national ”Data and Service Center for the Humanities”.

Peter Fornaro is part of the management team of the Digital
Humanities Lab of the University of Basel and has a background in
Physics, Electronic Engineering and Photography. He is doing research
in the field of digital archiving, imaging, cultural heritage preservation
and computational photography. Fornaro is also a member of the Swiss
Commission for Cultural Heritage Preservation (EKKGS).

Andrea Bianco is a PhD student in experimental physics at the
Digital Humanities Lab of the University of Basel. His research is
focused on digital image processing, spacing from hardware to software.
He is enthusiastically involved in development process of SIPI.

Benjamin Geer is part of the development team of the DaSCH in-
frastructure. He is a specialist in Middle Eastern studies and Computer
Science. His focus is on semantic web technologies (ontologies, SPARQL
etc.), data structures and software development in scala and C++.

33ARCHIVING 2017 FINAL PROGRAM AND PROCEEDINGS

https://www.gnu.org/licenses/agpl-3.0.en.html
https://cmake.org
https://en.wikipedia.org/wiki/JSON_Web_Token
http://www.tei-c.org/index.xml

