

Archive-enabling Tagging Using Progressive Barcodes
Steven Simske and Marie Vans; HP Labs; Fort Collins, Colorado

Abstract
We have previously described the Progressive Barcode, a

high-density color barcode that changes over time.4In this paper
we will describe how the progressive barcode works and its
applicability to information workflows and archiving applications.

Introduction
Due to the ubiquity of high-resolution mobile cameras, the

Data Matrix1 and QR 2dimensional (2D) barcodes are being used
now for many applications2. Color barcodes, often termed 3D
barcodes, offer increased density over 2-dimensional barcodes3,
which can be taken advantage of to embed longer data strings in
the same printed/displayed area. Additionally, color channels
offer the possibility of containing multiple, distinct sets of data in
the same “hybrid” mark.

The four-dimensional Progressive Barcode is a set of printed
color marks that do not change in size as they are used to represent
different stages (or “states”) in a workflow. These barcodes
support many different information lifecycles by allowing it to
change through time.4 Progressive barcodes can be also used to
support two (or more) applications or services in the same object.
One of these is usually standards-compliant and the other is
usually proprietary or customized. Thus, a “hybrid” of two
functions can be combined in a single mark.

These two sets of data include different densities of
information. The first set is binary, with high contrast between the
two binary encoding (usually black and white) tiles in the barcode.
The second is N-ary, and utilizes color that is indistinguishable
from white to the binary barcode reading software.

Building on previously published work4, we demonstrate that
archiving applications and services can be enabled by the
progressive barcode. They are most effectively deployed when
there are multiple types of information payloads needed for a
single object—e.g. fields of archiving standards and versioning
information as well as a variety of document/physical item
workflow-related objects.

Progressive Barcodes
A progressive barcode changes as a one-way function of its

current state. For example, if we start with a simple binary
sequence {000000000000} and then move to a next state through
the replacement of four 0’s by four 1’s. Then, two allowable next
states are {001010001100} and {100110000100}. In general, if
there are N 0’s (zeroes) left to be changed into 1’s (ones) and M
1’s added to the next state, then we can write N! / [M! (N-M)!]

different next states, where ! is the factorial operator. For the
progressive barcode, once a 0 has been changed into a 1, it cannot
change back into a 0. Thus, each next state can be immediately
compared to a previous state to see if it is logically a part of the
same workflow, a necessary but not sufficient condition for
security5. Figure 1 illustrates this concept.

These barcodes allow us to assign the statistical probability
associated with any transition between two steps in a workflow
based on how many bits are written and how many remain. If
progression step i is defined as Pi, where the number of residual (0
bits) at the end of the workflow is NRB, and the number of initial
unwritten bits is NIU, then governing equation for each step is:

(1)

Pi may be determined from, for example, the required statistical
confidence that a next step cannot be randomly guessed multiplied
by the total number of progressive barcodes of the current state
that will be readable in the workflow. If the progressive barcode is
binary, then the number of bits in the workflow is NRB-NIU. If there
are NC colors, then the number of bits increases to
[ln(NC)/ln(2)]*(NRB-NIU). The size (number of tiles) of the
progressive barcode to be used in the workflow can be determined
from these equations, along with the number of bits to write at
each state.

 Any number and combination of colors may be used to create
progressive barcodes. However, for demonstration purposes we
show six-color barcodes utilizing the pure printing colors: cyan
(C), magenta (M), and yellow (Y). These can be later overwritten
or overprinted to create three additional colors, red (R), blue (B),
and green (G). Figure 2 demonstrates the concept of color
progression. Each cell in the barcode starts out in a particular color
state and can only progress accordingly. For example, if a cell is
currently magenta, ‘M’, the next allowable state for the cell can be
either blue, ‘B’, or ‘R’, red. It may not progress to green. Once a
cell has reached the Black stage, it can no longer progress.5

 To determine the absolute data content of a color tile, we
consider each color tile to be independent. There are
log2(n)/log2(2) = log2(n) bits at any stage, where n=the number of
colors. For example, if n=2, as for 2D QR-Code, then there is 1 bit
per tile. For a color tile with six colors {RGBCMY}, there are
2.585 bits/tile. If there are eight colors allowed {RGBCMYWK},
there are obviously exactly 3.0 bits/tile. It should be noted that

130 © 2015 Society for Imaging Science and Technology

there is a trade-off between reliability and data-density3 when
color is introduced into barcodes. Previously, a series of
experiments on the effect of copying and restoration on color
barcode payload density addresses this issue3.

 Adding color progression allows us to use the “static” data
encoded within the black and white modules for standard purposes
such as serial numbers, and product information while allowing a
“separate channel” for encoding additional, workflow-related
information that changes over the course of the workflow. For the
static data, the off-the-shelf reader reads the black modules as
normal and the rest of the modules, whether white or saturated
non-white colors, as “white”. Note that for color progression in
this instance, colors are not allowed to progress all the way to
black. Instead, the progression terminates at red, green or blue.

Figure 1: Figure 4 illustrates new data being added to a progressive barcode

as it progresses through the workflow. The upper leftmost image (α)

represents a barcode with only the non-payload indicia indicated. The non-

payload indicia (NPI) are the perimeter pixels on all four sides and used for

calibration. The yellow pixels shown on the upper row, center, image (β) are

the data pixels which can be written to as part of the incremental writing

process. In the lower row, the initial barcode is pre-filled with, in this case, 16

data bits as shown in the leftmost image (γ). Next, the three workflow stages

from barcode, γ, result in incremental writing of pixels to the barcode (δ, ε,

and ζ). Note that this figure is for illustration purposes and does not reflect the

hybrid barcode.4

Figure 2. The basic lifecycle of a color tile, where the colors White, Cyan,

Magenta, Yellow, Blue, Green, Red and Black are shorthanded as W, C, M,

Y, B, G, R and K. 4

Progressive Barcodes for Archiving Applications
The amount of data that can be encoded in the first set of data

– that is, black and white data – will be limited by the total number
of black and white tiles available and the standards. URLs to
websites are typically encoded into QR Codes while Data Matrix

codes hold serial numbers, invoicing information or product
numbers. While these are common uses of the technology, it is
also possible to use them to encode other information; for
example, xml fields for archiving purposes, ISBNs and other
document-related information. The main characteristic of this
information is that it remains static over time. A second channel of
information can be encoded into the white tile channel, and this
information could be used to track and store documents, for
versioning or tracking document changes, and to assign ownership
of documents. This “hybridization” allows for multiple services:
open services and proprietary services. An example is the
encoding of a website URL along with security/authentication
services. These barcodes are readable by any off-the-shelf, QR
Code and the Data Matrix code readers. The Data Matrix code
demonstrates that a large quantity of data can be directly stored in
the black-as-black and rest-as-white tiles. Figure 3 demonstrates
this idea. Figure 5 demonstrates how these hybrid barcodes would
work with progression in the color channel.

Figure 3: Demonstration of barcode with two channels. The black and rest-

as-white will read with an off-the-shelf reader, the right Data Matrix will display

an abstract and the left QR-Code displays a test message.

Inference for Archiving Data
Progressive barcodes could be used for a series of

incremental, related or linked codes which can be simultaneously
secured as a multiplicity of items (rather than as individual
elements). An obvious example would be items packaged in a
carton which is placed on a pallet of like cartons and placed in a
container. For archiving data, the example could include images
contained by files that are contained within a directory on a
specific computer, where each level had differing access
permissions set.

Inference is the relationship between objects and their
containers. Suppose that we have individual objects, such as
images, signified by A, which are packaged together into a file,
signified by B. Multiple files are contained in folders, signified by
C. Finally, multiple folders are on each computer, signified by D.
Thus, D contains multiple C, where p is the number of C in D: a
relationship we indicate by Dn(Cm,Cm+1,Cm+2, …, Cm+p-1). Each C
contains s number of B: a relationship we indicate by
Cq(Br,Br+1,Br+2, …, Br+s-1). Finally, each B contains v number of A:
a relationship we indicate by At(Bu,Bu+1,Bu+2, …, Bu+v-1). It is clear
from this that the inference model, where Ƒ←Ɠ indicates
containment of set Ɠ by the container Ƒ. In this example, then, we
have the following inference relationship:

D←{C} ← {B} ← {A}

Where {} implies a set of 1 or more contained items.
Typically the set {} is of more than one item, although not always;
for example, a package or “electronic package” can be separately

131Archiving 2015 Final Program and Proceedings

labeled from an item inside it (for example a directory with a
single file in it).

We can then designate the number of items in a set Ɠ by
n(Ɠ). Next, we wish to know how many tags (barcodes) are
required to tag n(A) items when they are inferred to B, C and D
containers as described above. The following ratios are very
important: n(A)/n(B), n(B)/n(C), and n(C)/n(D). We will create a
series of cryptographically secure tags, in sequence, and assign
them to the containers they are representing as follows:

(D) (C) (B) A….A (B) …. (B) A….A (B) (C) …. (C) …. (C) (D)

In other words, if we have AA…A as the individual items and
B are the larger units around these, C the larger units holding the B
units, et cetera, then we use two tags (barcodes) on each enclosing
container to mark the start and end of the set of items within the
container…e.g. if n(A) = 4 and n(B) = 3, then for one C container,
tags are assigned as follows:

C B A A A A B B A A A A B B A A A A B C

To label the associated C, B and A items in this example, we
need n(A)*n(B)*n(C) tags for the “A” items; that is, 4*3*1 = 12.
We also need 2*n(B)*n(C) tags for the “B” items, and 2*n(C) tags
for the “C” items.

This continues in perpetuity. Suppose we have M levels of
containment – that is, M=alphabetic (levels of containment, where
M is for Matryoshka, since it is a Russian doll model) – then we
need one identifier each for the innermost units and two each for
each container. The overall number of identifiers required,
nIDs_required, is:

(2)

Thus, if M=4 (for the A, B, C, D example above):

(3)

For the N=3 [n(A)=4; n(B)=3; n(C)=1] example:

(4)

Thus,

(5)

 This total of 20 includes 12 primary tags for the 12
individual items, 2 each for the three B containers, and 2 for the C
container.

This model for inference, while simple, allows a wide variety
of possibilities. If the tags on the individual items {A} cannot be
read – for example if they are labeled with barcodes and inside a
folder that cannot be read during due to permission issues – then
the tags on the folder B, would correspond to the start and end of
the sequence of tags corresponding to the two on container B and
all of the individual tags on the A items within. Figure 6 is an
illustration of how this might work for document storage. Figure 4
is an example using tags from GS1, a global organization that

develops standards for supply chain workflows. The figure is
based on a single GS1 tag that is readable via inference even at the
pallet level.

Figure 4. Example use of inference using GS1tags.4

Instead of just wanting to know the range of values in a
container, we wish to ensure that multiple items can infer to the
same container in a statistically meaningful way. We also wish this
relationship to be established relatively (without connection to an
on-line database) and absolutely (by connecting to the on-line
database).

Relative inference is established when there is a mechanism
for associating a container with an item and vice versa. Progressive
barcodes are a good example of such a mechanism as they meet
the criteria for unambiguous, statistically-separable relative
inference.

Since the binary strings (or “unique IDs”) have a one-way
function moving forward – binary 0 can convert to binary 1 or stay
binary 0, while binary 1 cannot convert to binary 0 – there is
appropriate containment of the item by the container. As a
consequence of this, the item I is shown to be contained by the
container, C, with the relationship I + A = C subject to the binary
relationships I&A=0, I&C=I, and A&C=A. Thus, I=10000101 can
be contained by C=11001101 since C=11001101 is I=10000101 +
A=01001000 and I&A=0, I&C=I, and A&C=A.

The binary strings can be made non-ambiguous through an
explicit set of non-collision rules in the database. The minimum set
of rules is that each individual item I must have a fully unique ID.
A non-collision data set is enforced for this. Thus, the overall set
of all I, or {I}, is non-colliding. Because of the relationship I + A =
C subject to the binary relationships I&A=0, I&C=I, and A&C=A
(as described above), we ensure that the sets {I} and {C} are
mutually non-colliding by design (unless A=0).

Statistical separation between different values for {C} can be
ensured by requiring a set of rules about the different Hamming
distances between sets. The Hamming distance (Hd) between two
binary strings, BS1 and BS2, is the sum of all string indices j for
which BS1(j) XOR BS2(j) is equal to 1; that is:

(6)

M

Bi

M

ij

M

Aj
requiredIDs jnjnn)(*2)(_

)]()(*)()(*)(*)([*2)(*)(*)(*)(_ DnDnCnDnCnBnDnCnBnAnrequiredIDsn

)]()(*)([*2)()(*)(_ CnCnBnCnBnAnn requiredIDs

20812]11*3[*21*3*4_ requiredIDsn

DS DS DS

Inferenced or Identical Inferenced or Identical Inferenced or Identical

Pallet Case Carton Individual
Unit

132 © 2015 Society for Imaging Science and Technology

The Hd can be used to eliminate even non-colliding new
values for I, A or C if, in the context of the existing sets of I and C
binary strings these new values lead to unwanted similarity
between items and/or containers. The statistics of separation are
based on Hd and also the ability to “guess” a legitimate prior or
next state (that is, guess “I” from “C” or “C” from “I”), as
described in the Appendix and as applied in the below.

Relative inference, therefore, is validated independently of
the database. We need only show that I&A=0, I&C=I, and
A&C=A, and that the number of binary 1’s for I, A and C – that is,
n1(I), n1(A) and n1(C) – are the same for any set of purportedly
related items and/or containers. While this approach does not
“prove” that the individual binary strings are accurate, it does
show whether or not a set of purportedly related binary strings
actually fit a model.

Obviously, this model prevents casual tagging of a set of
items through assignment of random binary strings. It does not,
however, prevent reverse engineering of A and even C from a
large enough set of items {I}.

Absolute inference is a form of inference that requires
approval of two or more binary strings simultaneously, with or
without the overlying relative inference model. The easiest means
of absolute inference is the simple association of two binary
strings in a database. Another form of absolute inference is when
two strings are related to each other through an algorithm or
process; for example, if C=digital signature(I) or
C=scrambling_algorithm(I), etc.

Conclusions
Progressive barcodes are ideal mechanisms for applications

and services that can take advantage of two channels of
information encoded into a single mark that does not change size
over time. They are suitable for document workflow tracking and
archiving solutions where data for one channel does not change
(serial numbers, document IDs, MARC and other archiving
information) is encoded in the black and rest-as-white tiles and the
channel represented as color tiles can change over time for
tracking, security, and other purposes. Using inference, it is
possible to contain objects inside other objects and verify their
authenticity without having to open the container.

References
 [1] International Standard ISO/IEC 16022:2006(E), Second

edition 2006-09-15, “Information technology – Automatic
identification and data capture techniques – Data Matrix bar
code symbology specification,” 142 pp., 2006.

[2] International Standards Organization (ISO). 2006 B.
International Standard ISO/IEC 18004:2006(E), Second
edition 2006-09-15. Information technology – Automatic
identification and data capture techniques – QR Code 2005
bar code symbology specification, 114 pp.

[3] Simske, S.J., Aronoff, J.S., Sturgill, M.M., Villa, J.C. 2008.
Spectral pre-compensation and security deterrent
authentication, in Proceedings of the International Conference
on Digital Printing Technologies, NIP24, Pittsburgh,
Pennsylvania, pp. 792-795.

[4] S J. Simske, A.M. Vans and B. Loucks. 2012. Incremental
Information Objects and Progressive Barcodes, in
Proceedings of the Digital Fabrication and Digital Printing
Conference, NIP28, Quebec City, Quebec, Canada, pp. 375-
377.

[5] Vans, Marie, Steven Simske, and Brad Loucks. "Progressive
Barcode Applications." NIP & Digital Fabrication
Conference. Vol. 2013. No. 1. Society for Imaging Science
and Technology, 2013.

Author Biography

Steve Simske is Director and Chief Technologist for the Content
Solutions Lab in HP Labs, where he oversees the development of
document ecosystem and security solutions, brand protection,
education, print production, and other printing and personalized
systems research. He holds a PhD in electrical engineering from
the University of Colorado where he was also a postdoctoral
fellow in aerospace engineering.

Marie Vans is currently a Research Scientist with Hewlett-
Packard Labs in Fort Collins, Colorado. Her main interests are
security printing and document analytics. She has a Ph.D. in
computer Science from Colorado State University. She is also
currently a student in the Master’s program in the Department of
Information at San José State University where she is focusing on
the use of virtual worlds for distance education.

133Archiving 2015 Final Program and Proceedings

Layer 1 Barcodes don’t change
Layer 2 Same barcodes with

 progression

Figure 5. Example progressive barcode progression showing two layers: 1. Static information, 2. Proprietary information

134 © 2015 Society for Imaging Science and Technology

Figure 6. Example progression showing how inference can be used for document storage. Please note that the readability of

these and other barcodes in this paper after printing is not possible to guarantee.

135Archiving 2015 Final Program and Proceedings

