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Abstract 
As the production, the variety, and the consumption of born-

digital video grows, so does the demand for acquiring, curating 
and preserving large-scale digital video collections. A 
multidisciplinary team of curators, computer scientists and video 
engineers we explore the use of Non-Reference Image and Video 
Quality Algorithms (I/VQA), specifically of BRISQUE in this 
paper, to automatically derive ranges of video quality. An 
important characteristic of these algorithms is that they are 
modeled to human perception. We run the algorithms in a High 
Performance Computing (HPC) environment to obtain results for 
many videos at the same time, accelerating time to results and 
precision in computing per-frame and per-video quality 
assessment scores. Results, which were evaluated quantitatively 
and qualitatively, suggest that BRISQUE identifies the distortions 
in which it was trained, and performs well in videos that have 
natural scenes and do not have drastic scene changes. While we 
found that this particular model is not apt for evaluating 
collections with varied content, the results suggest that research 
into other I/VQA models is promising, and that their 
implementation at large scale can narrow the problem of curating 
very digital video collections and lead to preservation and access 
decisions based on informed priorities. 

Introduction 
The use of video has become significant and pervasive in our 

daily lives, going beyond traditional education and entertainment 
functions into areas such as personal communications exchange, 
criminal evidence, surveillance, and marketing. With this 
functional diversity comes a variety of formats, including 
advancing compression, and editing mechanisms to facilitate video 
creation and distribution. The advancements in video technology 
are important to cultural institutions, responsible for documenting 
society and of preserving video collections. Over time, these video 
collections grow without bound, severely encumbering the curation 
task. Accordingly, collecting institutions realize that individual and 
manual inspection, a traditional approach to assessing video 
quality and making subsequent preservation and access decisions, 
is an insurmountable task. Instead, novel, reliable, and automated 
methods are required for this purpose.  

Motivated by the need to develop curation solutions for large 
and varied video collections, this project investigates the use of 
Image and Video Quality Assessment (I/VQA) algorithms to 
generate data-driven, perceptually relevant indicators of video 
quality levels for large video collections. I/VQA algorithms are 
designed to predict the subjective quality of a natural image or 
video that has been digitally acquired, processed, communicated 
and displayed as would be perceived and reported by users [1]. 

Currently, such algorithms are used to assess the quality of images 
and videos in streaming applications, and to dynamically correct 
their distortions. In this project we explore if and which I/VQA 
algorithms can be used to conduct large-scale automated 
assessment from which the need for more in depth video analysis 
can be prioritized. 

We conducted experiments to understand the adequacy/scope 
and to refine the I/VQA algorithm BRISQUE using a reference set 
of videos and a set of artistic videos as testbeds. All the 
experiments were run using High Performance Computing 
Resources (HPC). Running parallel computational processes on 
HPC systems allows generating results for individual frames per 
video in a collection, promptly and accurately within one 
workflow. Interpreting these results entailed a qualitative 
evaluation this is viewing videos with frame-level quality 
predictions along with a graph indicating a holistic measure of 
quality over an entire video. 

In the context of a digital curation project, experimenting with 
these algorithms in an HPC environment benefits from an 
interdisciplinary approach. A collaboration between the Laboratory 
for Image and Video Engineering (LIVE 
http://live.ece.utexas.edu), which conducts research in I/VQA, and 
the Texas Advanced Computing Center (TACC 
http://www.tacc.utexas.edu), which deploys computational 
resources for open science research, our team combines the 
expertise of data curators and computational scientists, with that of 
video engineers. In this paper we will introduce the I/VQA 
algorithms, explain how they compare to current methods to 
estimate video quality in heritage video collections, show the 
experiments conducted to understand the fitness of the model for 
video collections’ assessment, and discuss the results obtained 
from testing the model in reference video sets and in a regular 
video collection.  

I/VQA Algorithms  
State-of-the-art I/VQA algorithms are based on natural scene 

statistics (NSS), which function under the premise that scenes have 
statistical regularities. Because the human visual system is tuned to 
note regularities from irregularities, the statistics sensitive to these 
variations in regularity have been shown to correlate well with 
difference mean opinion scores (DMOS) of images and video. To 
successfully map these statistics to a single perceptual quality 
score, these algorithms train on both images and videos that have 
corresponding opinion scores. These DMOS scores are computed 
from a set of subjective evaluations obtained from humans 
watching sets of videos that have specific types and degrees of 
distortions. These videos are rated using a continuous sliding scale 
with the labels “Worst,” “Poor,” “Fair,” “Good,” and “Excellent.” 
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The user scores are combined to compute the DMOS score on the 
range of [0-100], where 0 is “Excellent” and 100 is “Worst.” These 
human scores are necessary for measuring the impact that different 
distortions have on perceptual quality [1].  

I/VQA algorithms can be full-reference (FR) and no-reference 
(NR). The former require as input a high quality reference image 
or video against which a distorted copy can be compared to. In the 
context of curation, a FR algorithm, the Structural Similarity Index 
(SSIM), was used to verify if and to what degree the conversion of 
original video files involved information loss [2]. By contrast, NR 
algorithms measure the perceived quality in images and videos for 
which there is no original or pristine version available for 
comparison [1]. We propose that NR algorithms could be useful to 
understand a collection’s quality without the need for humans to 
review each video. But, studies have to be conducted to understand 
which models can be used to assess quality in video collections 
that are varied in content and distortions. The focus of this paper is 
evaluating if BRISQUE, a NR algorithm for image quality 
assessment that can be used to assess video, is appropriate for 
digital video curation. 

Related Work 
Collecting institutions have been traditionally focused on 

digitizing analogue video for preservation and access, and a 
number of video QC tools have been introduced for purposes of 
automatic and objective quality assessment of digitized files [3, 4]. 
This is a great improvement over the traditional approach in which 
humans reviewed the files to detect both errors originating in the 
analogue media that was digitized and errors resulting from the 
digitization process. Indeed, while humans can identify different 
types of video distortions, manually recording them with precision 
is extremely time consuming and inconsistent [5]. Aside from 
individual differences, popular QC tools identify various types of 
artifacts and noise in individual frames and across frame 
differences, producing frame-by-frame features [3] or averaged 
features [4] for each type of detected distortion. In turn, these 
results have to be interpreted to derive a holistic quality condition 
per video. Therefore, while these tools assist the curation task by a 
human, none of them eliminate the need for humans to view the 
videos. To accurately assess the condition of a video in a 
perceptually relevant context, these features must be mapped to a 
quality score which correlates significantly with human-based 
DMOS scores. 

Our work differs in methods and scope from the above, 
serving a complementary function. As opposed to detecting errors 
based on distortion-specific filters and corresponding ranges of 
normalcy, we are introducing perceptual subjective measures based 
on models of the human visual system to understand the quality of 
individual digital videos within collections. Importantly, the scores 
produced by the I/VQA algorithms are statistically significant 
through their correlation with the consensus scores obtained from 
people that have rated the distortions in reference video sets. Such 
consensus can be understood as the collective interpretation of 
quality. In addition, our project does not focus on detecting 
analogue distortions or on evaluating the results of the digitization 
process, but on distortions that are typical of compression 
algorithms. Because we are interested in processing large video 
collections, we run the model on a supercomputer allowing us to 

obtain DMOS predictions both holistically and at the per-frame 
scale. In addition, we also performed a study without training on 
rated distortions to remove subjectivity. In the following section 
we describe the testbed collections used to build and to evaluate 
our model, and the studies performed to determine its fitness to 
assess large-scale video collections conditions. 

I/VQA Studies 

Test Datasets 
For building models that correlate with perceptual quality, the 

CSIQ and LIVE video databases [6, 7], which contain 
corresponding DMOS scores for each video, were obtained. The 
CSIQ database contains a total of 12 reference videos and 216 
distorted videos. Of these distorted videos, we selected only those 
distorted videos related to compression and noise. The LIVE VQA 
database contains 10 reference videos and 150 distorted videos. Of 
these distorted videos, we selected only distortions related to 
compression. The final working set, after selecting videos related 
to compression and noise distortions, contains 22 reference videos 
with 260 total distorted versions based on these reference videos. 
Of these reference videos, all are captured from recording the 
physical world except for one representing an animated scene. The 
distortions in this final set include H.265, H.264, MPEG-2, 
MJPEG, Wavelet, and Additive White Noise (AWN). 

To evaluate the model within the curation context, we 
selected a diverse set of twenty-three digital art videos from a 
museum collection. The videos include natural scenes and artificial 
elements introduced as part of the artistic intent. All of the videos 
in this set were sold to the museum as DVDs and thus have 
MPEG-2 compression [6], but their technical provenance is not 
documented. Many of the videos could contain mixtures of 
compression distortions given the circuitous nature of their 
encoding. Not knowing how and with what tools they were filmed 
or edited, we did not have precise knowledge of the types of 
distortions present in the videos.  

BRISQUE Model  
 The following studies illustrate our research involved in 
identifying suitable I/VQA models for curation. Thus far, we 
utilize natural scene statistic features developed in the IQA model 
called Blind Referenceless Image Spatial Quality Evaluator 
(BRISQUE) [7]. BRISQUE is a general-purpose NR algorithm. 
Given the high performance of BRISQUE on static images, we use 
it as a feature extraction model.   "Feature extraction” is a common 
technique used in machine learning and image processing 
algorithms to derive variables, known as features, based on the 
initial set of input data.  Specifically, the BRISQUE algorithm 
extracts features by computing  a number of variables based on the 
statistical properties of natural scenes for use in its model.  One 
obvious limitation of the algorithm when applied to video is its 
lack of modeling distortions related to motion. To partially address 
this limitation, we incorporate frame differencing, thus each score 
in the BRISQUE model is produced from a static frame and 
neighboring frame differences as depicted in Figure 1. For each 
frame, we use the BRISQUE feature model to compute a total of 
144 features.  This extension allows the model to capture noise and 
compression artifacts that appear during inter-coding compression. 
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These 144 features per F_n are averaged over the entire video and 
input into an SVR (Support Vector Regressor) to obtain a single 
score for an input video.  The SVR is a supervised machine 
learning algorithm that is often used for pattern recognition and 
classification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Features used for the BRISQUE feature model. The current frame 
 to extract 36 features. Frame ࡮ is passed into the BRISQUE feature model ࢔ࡲ
differences produced from ࢔ࡲ െ ࢔ࡲ	 ,ା૚࢔ࡲ െ ࢔ࡲ ା૛, and࢔ࡲ െ  ା૜ are input࢔ࡲ
separately into the same feature model to produce a 3 sets of frame-
difference features. In this model, a total of 144 features is extracted specific 
to frame ࢔ࡲ.  

 
Our first study involved training the proposed model with the 

corresponding DMOS provided in both CSIQ and LIVE databases 
for all distortion categories. We used a Support Vector Regressor 
(SVR) to map averaged (over the entire video) features to these 
scores. Using leave-one-out cross validation, we trained on 21 
content types and tested on the remaining 1 content for the 
database collection. Figure 2 depicts the scatterplot that results 
from the 22 resulting tests. The overlaid logistic function, 
computed using the following remapping: 

 
ݕ ൌ ሺ1	logߙ ൅  ሻݔߚ

 
where ݔ is the score prediction from the SVR, ݕ is the remapped 
score, and α and β are computed using least squares minimization 
between ݕ and ground truth DMOS. This remapping serves to 
smooth the DMOS predictions for unseen content.  

To measure correlation between our model prediction and the 
ground truth DMOS scores, we computed the median Pearson’s 
linear correlation (LCC) and Spearman’s correlation coefficients 
(SRCC), allowing us to measure how well the relationship between 
the predicted and ground truth DMOS can be represented by a 
linear monotonic function. Recall that our reference training set 
has only 22 types of content. When measuring the correlation for 
distortions per content type, we observe that the median LCC is 
0.80, and the median SRCC is 0.81 (SRCC). However, when 
measuring correlation regardless of content type, we observe a 
lower median LCC of 0.55 and SRCC of 0.56.  This indicates that 
within video content, the predictions are highly correlated to the 
distortion level present in the video. However, these same 
predictions are weakly correlated with distortion level, across 

various content. Still, we considered that the results were 
encouraging enough to pursue the investigation with this model. 
For example, content is largely similar within each video. Thus the 
frame-based predictions for a video are well suited for tracking 
abrupt changes in quality within that video. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Scatter plot between predicted and actual DMOS. Curve indicates 
logistic function used for re-mapping predictions. 
 

We then wanted to evaluate how close the predicted scores 
aligned with the ground truth scores for the distortions for which it 
had been specifically trained. Using the same leave-one-out cross 
validation approach, we tested the 22 individual content categories 
in our training set. Our best results, quantified by the minimum 
average error between predicted scores and ground truth DMOS, 
exemplify the model’s ability to distinguish the level of distortion 
in a perceptually relevant way for the content types “Riverbed” and 
“ParkScene.” The prediction results for “Riverbed,” obtained in the 
LIVE database, are depicted in Figure 3. Additional results for 
“ParkScene,” obtained in the CSIQ database, are depicted in 
Figure 4. When taking into account the standard deviation of the 
ground truth DMOS, we observed that the currently proposed 
model captures the monotonic relationship across distortion levels 
(i.e. increasing the level of distortion increases the predicted 
DMOS score and vice versa). This is certainly an important 
relationship to capture for ranking video collections from best to 
worst quality. 

Knowing that all of the museum collection had MPEG-2 type 
compression, we particularly focused on the behavior of the model 
with this distortion. Analysis over the LIVE collection provides 
insight into the performance on MPEG-2. We observed that the 
BRISQUE-based model produced DMOS predictions which when 
compared to the ground truth DMOS scores, achieved 39% SRCC 
and 36% LCC correlations when considering all content together. 
On a particular video content, we find 50% correlation for both 
SRCC and LCC. The correlation is low, but is still useful for 
determining the worse and the best videos in a collection. This 
proposed model does not capture MPEG-2 distortions in isolation, 
but it is a general model that applies to many types of compression 
distortions. Given the circuitous nature of the encoding within the 
museum collection, this generalization is an important property. 
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Figure 3. Predicted results for the video “Riverbed” from the LIVE database. 
The x -axis shows the different distortions and their levels.  

 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 4. Predicted results for the video “ParkScene” from the CSIQ 
database. The x-axis shows the different distortions and their levels. 

 
Having the model trained for DMOS, we next studied how 

well the predictions served to assist curation on a collection of 
twenty-three video art pieces. Since this model makes predictions 
relative to the distortions it was trained on, it is crucial to identify 
where prediction accuracy suffers, both at the per-frame level and 
over an entire video. Figure 5 shows the predictions made on the 
test-bed collection in which the highest scores indicate lower video 
quality. Note that in general, the collection ranges from good to 
poor. We comment on the qualitative evaluation of these results in 
the Visual Evaluation Section.  

Parallel Implementation of the Algorithms 
To improve precision and time-to-results, the computational 

process for the quality assessment was implemented as a workflow 
using High Performance Computing (HPC) resources that allow 
multiple tasks to be executed in parallel. Parallel processing is 
essential to analyze large video collections in a timely fashion.  
The “Stampede” supercomputer at the Texas Advanced Computing  
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 5. DMOS scores predicted over 23 video art pieces going from 0 
excellent to 100 worse. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Screenshot from the visual diagnostic tool showing the current 
frame along with its score and the scores for all other frames.  

 
Center (TACC) was used as a test-bed for the development and 
testing of the parallel quality assessment workflow.  Stampede is 
one of the most powerful supercomputers in the U.S. for open 
science research with 522,080 processing cores spread over 6400 
nodes and 260 TB of memory. To ensure that the supercomputer 
resources are used efficiently, our parallel quality assessment 
workflow was designed to be scalable and use the appropriate 
number of processes for the analysis at hand.   

The steps in the workflow consist of a frame and metadata 
extraction of the video by ffmpeg, followed by the execution of the 
BRISQUE-based feature extraction algorithm on each frame; the 
final frame-by-frame prediction for each movie are then plotted 
and embedded into the original movie frame to allow for live 
viewing of the BRISQUE results for diagnostic purposes. This 
final stage in the workflow creates the visual diagnostic tool which 
superimposes the graph of the BRISQUE results along with the 
score of the current frame onto the original source video.  As 
shown in Figure 6, the score of the current frame (indicated by the 
red line) can be viewed in the context of the overall plot of the 
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scores from the entire video. The scripts that control the workflow 
allow for each computational process to be run in parallel using the 
‘launcher’ job execution framework at TACC.  We studied the 
efficiency of ffmpeg and our proposed model running on the 
Stampede supercomputer and found that an optimal run uses 8 
cores per node. In our workflow implementation, each compute 
node works on two videos at once and when finished starts again. 
Each node can analyze ~40 high definition frames per second. 

Visual Evaluation 
In projects involving the use of models to automate 

assessment processes, it is important to obtain reality checks by 
manually reviewing results in relation to data. In this case, a visual, 
qualitative evaluation of each video was required to understand the 
factors that contributed to the proposed model prediction scores, 
and the extent to which they can substitute human judgment of 
quality. Given that, except for the MPEG-2 compression present in 
all the movies, we did not know a priori what other types of 
distortions were present in the museum collection, and how the 
presence or absence of distortions affected the scores, we 
incorporated the visual identification of distortions in the analysis. 
Three team members watched each video using the visual 
diagnostic tool developed for this project (See Figure 6). During 
the viewing of each video, we noted the presence of distortions 
including those in which the algorithm was not trained on (e.g. 
interlacing, VHS blips, sensor noise and lens flair), and if the video 
had non-natural scenes such as animations or other special effects.  
The three of us also scored each video according to the same scale 
in which human subjects are asked to score reference videos, from 
1 to 5 in ranges that go from excellent to worse. We used this 
scores to evaluate if our assessment coincided or not with the 
algorithm.  

Judging from the agreement or disagreement between our 
scores and those of the model, we concluded that our proposed 
model is not appropriate for videos that have non-natural scenes, 
and that it does not perform as well with movies in which there are 
drastic scene changes or that have interlacing and other distortions 
that are not captured by the algorithm. Instead, the model 
performed well in videos that do not have too many scene changes, 
and that have distortions on which the algorithm was trained. This 
agrees with the results noted in Figures 3 and 4 produced from our 
training set. 

Objective Evaluation 
On a last study we attempted to remove the subjectivity from the 
quality assessment process. For this we extracted the BRISQUE-
based features, as depicted in Figure 1, from both static image 
frames and frame differences, from both the LIVE and CISQ 
databases, to evaluate the ability of these natural BRISQUE 
features to detect degree of distortion without training on rated 
distortion, i.e. completely blind. From the distorted and pristine 
reference videos, we extracted the features and trained a one-class 
Support Vector Machine on the pristine feature set. We then input 
the features from the distorted set to this model to produce 
distances from natural. We define this distance from natural as the 
distance from the separating hyperplane surrounding the pristine 
features. Essentially, natural distortion-free videos should produce  

Figure 7. Distances from “natural” across distortion categories and 
corresponding levels. 

 
features that are statistically well-behaved, only varying within 
some tolerance. Measuring this distance from the normal tolerance 
can also be seen as a distance from “naturalness.” Figure 7 depicts 
the capability of this model at predicting relative magnitudes of 
degradation across several distortion categories and levels when 
averaged across content. Here, distance is only meaningful in a 
relative sense and distance of 0 would indicate excellent quality. In 
this figure, all distortions have at least some distance from 0 
indicating the distortion presence. Distances for the AWN 
distortion category appear to differ from each other more than 
distances for other distortion categories. This is a direct result of 
BRISQUE feature sensitivity to noise. This distance depends 
directly on the learned statistics and only appears to have meaning 
in a relative sense. 

We then correlated the results between the distance measures 
and DMOS to determine if the results are statistically significant 
and found that the correlation is too weak. Videos under curation 
may have unknown and sometimes novel distortion patterns for 
which a distortion-blind model would be theoretically ideal. 
However, it is difficult to produce a completely distortion-blind 
model without a more complete and accurate model of the human 
visual system in place. Human visual systems can be modeled, and 
if a model were good, it would not be necessary to use the human 
opinion for training the algorithms. Also worth noting is that rating 
quality is a highly subjective experience even with an ideal model 
of human vision, and thus the proposed model works well because 
it uses opinions for the training process. 

Conclusions 
Anticipating the growing and increasingly varied videos cared 

for by collecting institutions, this project aims to implement a 
large-scale curation system to categorize videos into ranges of 
quality. We started our research investigating the referenceless 
BRISQUE-based features, and we have learned both its limitations 
and potential advantages. We learned that we could not expect this 
model to assess varied collections with high accuracy, but that we 
could expect it to assess relative quality within individual videos 
and across videos that comply with certain characteristics.  
Overall, after going through the process of evaluating and testing 
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we consider that the utilization of I/VQA algorithms for curation is 
promising, and more studies need to follow. To further this goal, 
we are analyzing techniques within the top-performing Video 
BLINDS (Blind Image Integrity Notator using DCT Statistics) [8] 
and NIQE (Naturalness Image Quality Evaluator) algorithms [9].   

We have also identified the need to conduct studies 
addressing the issue of diversity in content across videos, as is the 
case with collections belonging to cultural and educational 
institutions. We found that current models appear not to consider 
distortions due to artistic intent, and that are often proven using a 
relatively small collection of pristine videos, which are then 
distorted artificially. We are amassing a large and varied testbed 
collection to provide a thorough examination of the statistical 
variations. Analyzing larger statistics will provide new insights 
about video quality by removing the aforementioned limitations. 
The results from these algorithms can inform about the types of 
distortions that are present in digital video collections, provide 
insights about the videos technical provenance, and help make 
curatorial decisions. 
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