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Abstract  

 
Cultural heritage digitization centers worldwide rely on 

quality management systems to insure the accuracy and 
consistency of their digitization efforts. Universal to all 
digitization quality management is the accurate measurement of 
color test targets. Testing at the Library of Congress has shown 
that significant variability exists between manufacturers and 
models of spectrodensitometers reading standard test targets.  This 
variability has been measured commonly as E2000 3 and as 
large as E2000 4, leading to improper calibration of imaging 
systems and less than ideal color accuracy. In this paper we 
present two robust statistics-based algorithms that estimate the 
true color from multiple spectrodensitometer measurements, 
effectively reducing measurement error. The estimated colors can 
then be regarded as the ground truth for imaging device 
calibration and performance evaluation. Besides the true color 
estimation, the second algorithm in particular characterizes the 
performance of the devices by estimating their bias and variances. 

1. Introduction  
 
Color accuracy [1] is one of the critical factors in imaging 

quality analysis, which is extensively used in digital preservation 
and archiving applications. Color accuracy assessment is generally 
implemented by scanning or taking a picture of a standard target 
board, for example, Macbeth ColorChecker SG chart1 or 
GoldenThreadTM target2 (see Figure 1), then comparing the derived 
image values with the pre-measured color patch values provided 
by the manufacturers. The metric to measure the color difference 
between two measurements is generally computed using the CIE 
E2000 [2, 3]. Imaging devices with large E2000 values should 
be recalibrated and profiled to achieve satisfactory results before 
production. 

In practice, target board color values deviate from previously 
measured values for many reasons. To overcome this problem, 
users may measure the targets on their own with devices such as 
colorimeters or spectrodensitometers. However, this process 
assumes that these instruments produce accurate measurements 
when properly calibrated, which is not true due to the inter- and 
intra-variations of the devices. Such variations affect the true 
measured color values and produce inaccurate assessment results. 
To characterize such variations, color scientists have constructed 

                                                                 
 
 

1 ColorChecker Digital SG.  
   http://xritephoto.com/ph_product_overview.aspx?ID=938 
2 Image Science Associates. http://www.imagescienceassociates.com/ 

regression models [4, 5, 6, 7] to depict different types of device 
error, for example, the photometric, wavelength, and bandwidth 
error. Both linear and nonlinear terms are constructed in the 
regression model to approximate these errors. To estimate the 
model parameters, a rather large set of standard tiles (e.g., > 400 
tiles in [4]) of different materials with different gray scales and 
colors should be used as the training samples to fit the model. In 
addition, a reference device (e.g., Zeiss DMC-26 in [5] and 
Spectraflash 500 in [4]) is employed to produce the “ground truth” 
for the performance assessment of other devices. Such approaches 
have high complexity and experimental cost on sample collection. 
Moreover, these approaches are infeasible for general users who 
do not have access to those resources. 

 

 
Figure 1. Examples of targets for device color accuracy assessment.  

Left: ColorChecker SG chart; Right:  GoldenThreadTM target. 

 
In this paper, we present two algorithms to estimate the true 

color values by optimizing the proposed objective functions that 
employ the robust statistics from multiple spectrodensitometer 
measurements. For each target patch, we conduct multiple 
measurements of the color with each device, and the output is the 
estimated true color for that patch. The first approach minimizes 
the total variance of the measurements. The total variance is 
constructed as the weighted sum of the individual device 
variances. This is a convex optimization problem with two 
constraints: (1) the valid range of each weight is restricted to [0, 
1]; (2) the sum of the weights is 1. Linear programming is applied 
to compute the weights, and the true color is estimated as the 
weighted sum of the individual means of the multiple 
measurements of each device. 

Our second algorithm is inspired by medical image 
segmentation applications, which combines multiple expert 
manual labels to derive the optimal estimation of the true object 
boundary [8, 9]. The objective function is the complete likelihood 
for the observed measurements and hidden data (true color values), 
given the estimated model parameters (bias and variance of each 
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device). The expectation-maximization (EM) algorithm is 
employed to iteratively estimate the true color and the device 
parameters. This method produces not only the optimal color 
estimation, but also the bias and variance of each device, which 
provides a way to characterize the device performance.  

This paper is organized as follows: Section 2 briefly 
introduces the background of color accuracy and statistics 
technologies. Section 3 presents our proposed algorithms for 
optimal color estimation. Experiment results on a ColorChecker 
SG chart and a GoldenThreadTM target are presented in Section 4. 
We draw conclusions in Section 5. 

2. Background  
 
Imaging quality assessment is usually implemented by 

examining different reference regions with desired features on 
target boards. For example, slanted edges or periodic patterns of 
different frequencies [10] are always used to evaluate the imaging 
resolution and sharpness; series of gray scale step wedges with 
increased density for OECF derivation and noise estimation; and 
arrays of color patches for color accuracy assessment. In this work 
we focus on color accuracy assessment, and we utilize the 
Macbeth ColorChecker SG chart (140 patches) and 
GoldenThreadTM Target (30 patches) for the assessment. As 
introduced in Section 1, color accuracy is generally measured by 
computing the CIE E2000 value between the imaging results and 
the ground truth. There are both commercial and free tools 
available for the assessment task, for example, the websites of 
delt.ae3 and Bruce Lindbloom4, and DICETM software.  

Colorimeters，spectrodensitometers, or spectrophotometers 
are the devices generally used for color value measurements 
following the ISO standards [1, 11, 12]. For example, we may 
choose the illuminants (e.g., D50 or D65), data format (spectral 
response or tristimulus colors), and output color space (e.g., XYZ 
or LAB) with the device user interfaces. In practice, different 
devices produce different measurements at different times on the 
same target. A single device will often produce different 
consecutive measurements on the same target. This introduces 
both intra- and inter-variations on the measurements, which 
confuses users on the identification of accurate and robust devices. 

Statistics have been used to construct regression models [4, 5] 
that characterize the performance of spectrodensitometers, based 
on which the true color values can be estimated. For example, 
seven types of systematic errors are characterized in [5] to 
construct the regression model, including photometric zero error 
(Rt() = Rm() + B0),  photometric linear scale error (Rt() = Rm() 
+ B1Rm()), photometric nonlinear scale error (Rt() = Rm() + 
B2[1-Rm()]Rm()), wavelength linear scale error (Rt() = Rm() + 
B3dRm/d), wavelength nonlinear scale errors (Rt() = Rm() + 
B4w1()dRm/d, and Rt() = Rm() + B5w2()dRm/d), and 
bandwidth error (Rt() = Rm() + B6d2Rm/d2). Here Rt() and 
Rm() correspond to the true color and measured values, 
respectively. w1() and w2() are wavelength weighting functions, 
and Bi (i = 0, …, 6) are the model parameters to be fitted. As 

                                                                 
 
 
3 http://delt.ae 
4 http://brucelindbloom.com/index.html?Eqn_DeltaE_CIE2000.html 

indicated in Section 1, a large number of sample colors are 
generally needed for a robust parameter fitting. Therefore those 
approaches are not feasible for general users due to the very high 
cost of resources. Furthermore, all of these approaches require a 
high-end device to produce the ground truth as the reference for 
the regression model construction, which may not be accessible to 
general users. In [13], the reference values are provided by the 
manufacturer of the 14 BCRA tiles, which are employed to 
characterize 9 different spectrodensitometers by estimating their 
accuracy (bias) and precision (variance).  

Robust statistics have been extensively employed in 
numerous signal and image processing applications. For example, 
image total variation minimization [14] is a major approach for 
image denoising, which estimates the true signal from noisy 
observations. Image total variation is regarded as an approximation 
of the image noise, thus the minimum corresponds to the noise free 
image. This is a convex optimization problem, and gradient 
descent-based algorithms may be applied to obtain the solution. 
When expert labels of the object boundary are available, the 
complete data likelihood maximization [8] is applied to estimate 
the true image segmentation results from multiple expert inputs. 
The complete data likelihood is constructed as the joint probability 
of both data (i.e., observed labels or measurements) and model 
parameters (expert or device characterization parameters). Because 
the model parameters are unknown, the conditional expectation 
given the observable data using the current parameter estimation is 
obtained instead. Computing the conditional expectation of the 
original complete data likelihood is implemented by the E-step of 
the EM algorithm, and identifying the model parameters that 
maximize this function is referred to as the M-step. Motivated by 
those applications, we developed two new algorithms for the true 
signal (color) estimation from multiple observations 
(spectrodensitometer measurements).  

3. Proposed Approaches  
 
We propose two approaches to estimate the optimal color 

values from the measurements of multiple spectrodensitometers. 
Five spectrodensitometers are used in our experiments: X-Rite® 
528, two X-Rite® i1Pro, Barbieri® Spectro LFP, and Konica 
Minolta® FD7. All of these devices are either new or recertified by 
the manufacturers for our experiments. Thus their measurements 
are regarded close to the true colors. 

Our first approach is motivated by the total variation-based 
image denoising [14]. Given the measurements of the same target 
patch from a set of I (I = 5 in our application) 
spectrodensitometers, we define the true color of the target patch 
as a weighted sum of the average measurements (μi, i = 1, …, 5) of 
the spectrodensitometers, i.e.,  






5

1

I

i
ii μα ,            (1) 

where αi are the weighting parameters. We derive these parameters 
by minimizing the total variance,   
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where σi
2 are the variances of the devices. For each 

spectrodensitometer, we measure the target patch multiple times 
and compute the mean of the patch color (μi) and the 
corresponding variance (σi

2). To minimize Eq. (2), we further add 
the constraints of the parameters:  


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iα  and 10  iα . 

This is a convex optimization problem that the optimization is 
guaranteed to converge to the global minimum. The linear 
programming technique is applied to optimize Eq. (2), then the 
derived parameters are used in Eq. (1) to obtain the estimated true 
color. 

Our second approach employs the same principle in [8, 9] that 
estimate the true object boundary from a set of expert manual 
segmentation results. The objective is to maximize the complete 
data likelihood using the EM algorithm. Because the complete data 
likelihood consists of the unknown device parameters (i.e., 
accuracy and precision in [13]), we instead compute the expected 
value of a conditional probability density function for the true 
color given the measurements and previous estimates of the model 
parameters. Here we adopt the statistical terminologies to use 
variance (σ2) and bias (β) to characterize the device performance. 
The objective function is 

     )1(2)( ,|),|,Pr(logmaxarg  tt ssE       (3) 

where s and τ represent the measurements and ground truth, 
respectively. This conditional expectation is evaluated with respect 
to p(τ | s, θ(t-1)). With the EM algorithm, we iteratively estimate the 
expectation and the device parameters. In the E-step, we can 
derive the joint variance of the devices and individual mean of 
each patch as: 
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where σi
2 and βi (i = 1, …, I) are the variance and bias of the 

spectrodensitometers. j (j = 1, …, J) are the average color for the 
target patches, and sij are the measurement of the j-th patch by the 
i-th spectrodensitometer. It can be seen that the total variance is 
the harmonic mean of the individual device variance, and the mean 
color for the patch is an inverse of total variance-weighted sum of 
the difference between the measurement and the bias. In the M-
step, we estimate the device parameters that maximize the 
conditional expectation of the complete data likelihood.  
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The device bias is the average difference between the 
measurement and the previously estimated true color over all 
patches, and the device variance is a sum of the term of current 
variance estimation and the total variance of Eq. (4). In practice, 
we compute the initial j

(0) and the (σi
2)(0) with the measurements, 

i.e., j
(0) is the average of all the I spectrodensitometer 

measurements on the j-th patch, and (σi
2)(0) is similarly computed 

as the variance of the measurements of each device over all the 
patches, i.e., the average variance on all the target patches. Thus 
we start with Eq. (6) to compute Eq. (4) and (5), based on which 
we compute the Eq. (6) and (7) to continue the iteration until the 
final convergence. 

4. Experiments  
 
Our experiments include tests of the two algorithms on a 

ColorChecker SG chart and a GoldenThreadTM Target. In these 
experiments we measure each target patch five times for the 
computation of μi and σi

2 in Eq. (1) and (2), as well as for the 
initialization of j

(0) and the (σi
2)(0) in Eq. (4) and (6). We choose 

D50 as the illuminant for all the devices, and CIE LAB space as 
the output color values due to its device independence. After the 
true color estimation (i.e., Eq. (1) and Eq. (5)), we further conduct 
the hypothesis tests to compare the results of our two algorithms. 
Besides the true color estimation, the second algorithm directly 
characterizes the device performance by computing their variance 
and bias. In this presentation, in order to avoid endorsing a specific 
product, we instead use the letters A, B, C, D, E to represent the 
devices.  

Our first experiment is to measure the color values on a 
GoldenThreadTM Target, which consist of 18 color and 12 gray 
patches. For the first algorithm, after computing the μi and σi

2, we 
use a Matlab® optimization package to minimize Eq. (2), and 
derive the weighting parameters αi. We then compute the bias βi 
for each spectrodensitometer by comparing the measurements with 
the estimated true color (LAB), as shown in Table 1. They are the 
average values over all patches. It can be seen that the device C 
obtains the minimum variance and the device D has the smallest 
bias, see the bolded numbers. In Table 2, we present mean and 
variance of E2000 over all patches by comparing the 
measurements with the estimated true color. Overall, the device C 
obtains the optimal measurements, i.e., closest to the true color. 

For the second algorithm, Table 3 presents the directly 
estimated σi

2 and βi for each spectrodensitometer using Eq. (6) and 
(7). We obtain the same results as that of the first algorithm, i.e., 
the device C has the smallest variance and the device D obtains the 
smallest bias compared with the true color. Similar to Table 2, we 
compute the mean and variance of E2000 for the second 
algorithm results in Table 4. Again the device C obtains the 
smallest measurement error. 
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 A B C D E 
L Var 0.0098 0.0048 0.0005 0.003 0.0071 
A Var 0.0014 0.0203 0.0002 0.0015 0.0013 
B Var 0.0031 0.05 0.0008 0.0036 0.0024 
L Bias 0.7116 -0.2838 0.2069 0.0289 -0.2244 
A Bias -0.0347 0.2814 -0.0804 -0.0186 -0.058 
B Bias 0.3988 0.5364 -0.0844 -0.0776 0.0818 
Table 1. Spectrodensitometer bias and variance estimated by the 
total variance minimization (GoldenThreadTM Target) 
 
 
 E2000 Mean E2000 Variance 
A 0.7984 0.1382 
B 1.3749 0.8221 
C 0.4984 0.1238 
D 0.6294 0.2101 
E 0.5261 0.1229 
Table 2. Error between the spectrodensitometer measurements and 
the estimated true color by the total variance minimization 
(GoldenThreadTM Target) 
 
 
 A B C D E 
L Var 0.0695 0.4408 0.0005 0.606 0.2928 
A Var 0.0481 2.5081 0.0023 0.7131 0.513 
B Var 0.1171 1.7077 0.0006 0.4225 0.4286 
L Bias 0.6238 -0.3716 0.1191 -0.0589 -0.3123 
A Bias -0.0526 0.2634 -0.0983 -0.0366 -0.0759 
B Bias 0.2278 0.3654 -0.2554 -0.2486 -0.0892 
Table 3. Spectrodensitometer bias and variance estimated by the 
EM algorithm (GoldenThreadTM Target) 
 
 
 E2000 Mean E2000 Variance 
A 0.5641 0.0398 
B 1.2193 0.5213 
C 0.2256 0.0045 
D 0.6885 0.26 
E 0.6443 0.0811 
Table 4. Error between the spectrodensitometer measurements and 
the estimated true color by the EM algorithm (GoldenThreadTM 
Target) 
 
 

After the color estimation, we compare the estimated color 
values obtained by our two approaches. First we conduct the 
hypothesis tests (paired-sample t-test) that the two estimated colors 
are the same. Statistically, the two approaches produce the same 
results for all 30 patches, i.e., we cannot reject the null hypothesis 
that the difference between the two estimations is 0. We further 
compute the E2000 between the two estimated true colors for 
each pair of the 30 patches. The mean and variance of E2000 are 
0.47 and 0.1, respectively. The average difference is less than 1 
(i.e., the empirically used “just noticeable difference” of color), so 
we determine that the two approaches produce the same results. 

Our second experiment is conducted on the ColorChecker SG 
chart, which consists of 140 color and gray patches. As in the first 
experiment, we estimate the true colors using our two approaches 
and characterize the spectrodensitometers by their variance and 
bias. Table 5-8 show the results similar to those on Table 1-4. 
With this experiment, it is not obvious to identify the best device 
with their variance and bias (Table 5 and 7). From Table 6 and 8, 
we can see that the device C obtains the best performance on color 
accuracy, i.e., smallest E2000 compared to the true colors. In the 
end, the hypothesis tests are conducted to compare the two 
approaches, which produce statistically the same results on 134 out 
of the 140 patches. Computing the E2000 over the 140 patches 
for the two estimated colors, the mean and standard variation of 
are 0.57 and 0.21. Again, they obtain the same results with 
E2000 less than the just-noticeable difference (JND). 
 
 
 A B C D E 
L Var 0.0058 0.0146 0.0016 0.0009 0.0018 
A Var 0.0021 0.0083 0.0004 0.0008 0.0022 
B Var 0.0027 0.0334 0.0033 0.0036 0.0028 
L Bias 0.5321 -0.3916 -0.2085 0.4505 0.3987 
A Bias -0.1332 -0.0082 -0.2018 -0.0834 -0.1333 
B Bias 0.0662 0.4766 -0.2396 -0.1846 -0.1548 
Table 5. Spectrodensitometer bias and variance estimated by the 
total variance minimization (ColorChecker SG Target) 
 
 
 E2000 Mean E2000 Variance 
A 0.7633 0.261 
B 1.3652 0.7811 
C 0.6357 0.2064 
D 0.7929 0.3803 
E 0.8056 0.4411 
Table 6. Error between the spectrodensitometer measurements and 
the estimated true color by the total variance minimization 
(ColorChecker SG Target) 
 
 
 A B C D E 
L Var 0.1998 0.6069 0.0451 0.2028 0.1837 
A Var 0.0067 3.1996 0.0286 0.4133 0.5021 
B Var 0.0958 2.585 0.1222 0.4773 0.4655 
L Bias 0.3758 -0.5478 -0.3648 0.2942 0.2425 
A Bias -0.0245 0.1169 -0.0931 0.0253 -0.0246 
B Bias 0.0734 0.4838 -0.2323 -0.1773 -0.1476 
Table 7. Spectrodensitometer bias and variance estimated by the 
EM algorithm (ColorChecker SG Target) 
 
 
 E2000 Mean E2000 Variance 
A 0.3894 0.0577 
B 1.4011 0.5737 
C 0.3757 0.0281 
D 0.5989 0.0692 
E 0.6041 0.0853 
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Table 8. Error between the spectrodensitometer measurements and 
the estimated true color by the EM algorithm (ColorChecker SG 
Target) 

5. Conclusion  
 
In this paper we present two algorithms to estimate the true 

colors from multiple measurements of different 
spectrodensitometers. Motivated by the image and signal 
processing applications, our approaches employ robust statistics to 
derive the optimum estimation. Hypothesis tests and the E2000 
comparison show that the two approaches produce the same 
results. Besides the true color estimation, we also characterize the 
device performance by their bias, variance and the error to the true 
color. In practice, in case users do not have multiple 
spectrodensitometers to derive the optimal color estimation, they 
may choose advanced devices, for example, the device C in our 
test, to measure the target as an estimation of the ground truth.   
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