

Redacting Private and Sensitive Information in Born-Digital
Collections
Kam Woods and Christopher A. Lee; University of North Carolina; Chapel Hill, NC

Abstract
Redaction of personal, private, and sensitive information

from born-digital materials is increasingly important for
repositories. Collection sizes are often too large to process without
automation – the assistance of software designed specifically to
identify and classify such information and present it in a format
that facilitates redaction decisions. Distinguishing between items
that may be redacted automatically and those that require manual
intervention is similarly important.

This paper examines the identification, organization, and
redaction of private and sensitive information identified within
born-digital materials, particularly those contained on disk images
extracted from fixed and removable media carriers. We identify
specific items of interest in file systems and individual file formats
that may be targets for redaction, and present two approaches to
managing and providing access to redacted materials using open
source tools developed for the BitCurator Access project (bca-
webtools) along with supporting digital forensics software.

Motivation
Planning and implementing a redaction strategy for born-

digital materials is an essential task for libraries, archives and
museums (LAMs). Digital media acquisitions often contain data
that may be classified as private, sensitive, or individually
identifying, and the complexity and volume of information being
collected demands automation to ensure that risks of inadvertent
disclosure are minimized.

Personally identifying information (PII) is defined as any
information that can be used to uniquely identify a specific
individual. Common examples include full name, address, email
address, date of birth, gender, age, financial account information,
biometric data, and vehicle data. Sensitive information may be
defined more broadly, and include privileged communications,
classified data and/or communications, or information that may
compromise legal, ethical, or contractual agreements.

The increasing complexity of mechanisms used to manipulate
digital data – modern operating systems, file systems, and
networked communications – mean that traditional (predominately
manual) methods of redaction are in many cases no longer
practical or effective.

These issues affect information produced in a wide range of
domains. Publicly available government documents have long
been sources of inadvertently leaked sensitive information.
Unredacted information on legal proceedings, organizational
procedures, and financial records are routinely described in
popular media outlets. Research data sets (especially those from
biomedical and social science studies) may include unredacted
data that can be used to identify individuals. Finally, archives and
manuscript materials are often collected from producers (e.g.
individuals, organizations, families) who may have been unaware
of the potential for extraction of sensitive content from their digital
assets.

Storage devices containing bootable operating systems in
particular present many challenges. Log files, web browser caches,

system hibernation and recovery files can be significant sources of
PII and sensitive data. Partially overwritten data and “deleted”
files (those no longer visible in the mounted file system but still
partially or fully recoverable) can be identified and extracted using
specialized software.

In this paper, we examine applications of open source digital
forensics and data recovery tools to digital materials acquired by
LAMs. We do this specifically in the context of software designed
to automate redaction, and address several specific issues: why
redaction is needed; entities and events that can be identified in the
data and associated metadata; types of redaction that can be
performed on born-digital data with associated risks to data
integrity; and software tools and workflows required for redaction.

Related Work
Information on current redaction practices for born-digital

materials in LAMs is relatively sparse. A range of standards
describe types of information to be redacted, but the actual practice
of redacting this information is often bespoke – tuned to the
collection, file types, and file systems being processed.

Privacy and confidentiality of information within collections
of primary sources have been discussed thoughtfully within the
archival literature [1][9], though discussions of technically
implementing measures for born-digital materials have been quite
limited. A guideline for archives planning to redact information
from specific commonly used document formats can be found in
[16]. More general guidance may be found in [4], [15] and [18],
although the latter does not explicitly discuss electronic records or
born-digital formats. The authors have previously published a
general discussion of approaches to automating redaction of
information from disk images [8], including potential applications
of digital forensics tools [20].

In previous work [21], we developed a graphical interface and
reporting mechanism that could be used by LAMs to build
visualizations and text reports describing possible PII contained
within disk images. This software depends on Simson Garfinkel’s
bulk_extractor to identify PII at byte offsets within a disk image,
and uses the identify_filenames.py script distributed with that
software to link those identified items, or features, to extant files.
A set of Python scripts then transform this output into Excel and
PDF documents that can be used to prioritize handling of
individual files.

Approach
We focus on redaction of information from disk images

extracted from digital media carriers, and on techniques that apply
to a broad range of modern file systems and files understood by
software libraries designed to identify them within a range of disk
image formats. Our approach uses open source digital forensics
tools and software developed for the BitCurator Access project to
identify, report on, and redact PII and other sensitive data found in
disk images.

In the following sections, we explain our criteria for selecting
redaction candidates that may be automatically redacted and
automatically verified, describe two approaches to redacting these

2 © 2015 Society for Imaging Science and Technology

items in raw and forensically packaged disk images, and
demonstrate how these approaches are implemented in BitCurator
Access tools, including bca-webtools. We focus on the process of
redaction, rather than the identification of individual items to be
redacted, which vary considerably based on the tools being used
and the criteria for redaction for specific collections.

Identifying Candidate Redaction Items

Knowing what to redact, selecting strategies to identify items that
meet the relevant criteria, and executing the search for those items
varies according to collection contents and institutional policy. For
“data at rest” – in this case, data contained on storage devices
transferred to a collecting institution – there are general redaction
guidelines relevant to the needs of different types of institutions
that wish to de-identify these media of PII and sensitive data [10].
Common redaction cases for LAMs may include:

 Names, addresses, phone numbers, Social Security
numbers, PII associated with minors, birth dates, court
records, and closed legal records

 Medical data that can be linked to individuals
 Corporate and personal financial information
 Data from research involving human subjects
 Classified information

Some of these categories are broad enough to require manual
review, while others may be identified with greater consistency
using automated tools. It is important to recognize that born-
digital data can contain various patterns that, prima facie, do not
appear to be sensitive, but can be sensitive when combined with
other patterns (e.g. IP addresses that can be linked to specific
individuals or behaviors) [11]. We focus on a subset of the
scanners used by bulk_extractor to identify items likely to
constitute a concern for LAMs: Social Security numbers, credit
card numbers, birth dates, geolocation (GPS) metadata, exif
metadata, email addresses, and email attachments.

In past work, we modified existing digital forensics tools and
created new tools designed to build reports about many of these
redaction candidates [21]. Here we describe a new tool chain to
parse these lists and apply redaction actions in bulk. The following
section discusses these approaches.

Redacting Items of Interest

Most file format-specific redaction tools manipulate file items
directly using existing application programming interfaces (APIs)
or knowledge of the file format structure to ensure the object
remains format-compliant and will continue to render correctly
using standard viewing software (e.g., Acrobat for PDF files).

Redaction of information from disk images introduces
additional complexity. Redaction candidates can exist within
specific files, in slack or unallocated space on the device, or in
areas reserved for operation of the file system itself (for example,
those reserved for file system metadata, boot operations, and swap
space).

Commercial and open source forensic disk image formats are
structured to discourage deliberate alteration. A forensic disk
image, once created, is effectively read-only. It may be altered, but
not without evidence of that alteration manifesting in mismatches

in cyclic redundancy checks embedded in the file, or in MD5 and
SHA checksum failures corresponding to the raw image contained
within the forensic package. Redacting contents from a forensic
image requires one of several alternate approaches: extracting
individual file items from the image to be redacted and provided
for access separate from the original file system; extracting the raw
disk image from the forensic package and redacting it at the block
level (either to be provided for access in raw form or repackaged
in a new forensic container); and constructing a software library to
blacklist contents of the original disk image at the directory, file,
or block level.

In this paper we present implementations of the latter two
approaches. Both of these approaches retain the structure and
organization of the original file system and file-level metadata.
Each has specific advantages depending on the access scenarios
envisioned for the materials.

The first is the creation of a redacted “surrogate” disk image –
a copy of the original disk image prepared for access by redaction
at the block level. In the following section, we describe how to
provide access using existing digital forensics software libraries to
parse the structure of the file system in this surrogate and expose
directories and files directly without mounting the file system. Use
of existing digital forensics software libraries can prevent access to
data in unallocated areas, as the access mechanism provides access
only to those blocks associated with allocated files.

The second approach is the creation of an “access overlay”
used to provide access only to specific directories and file items
within the file system. This whitelist is constructed as an annotated
Digital Forensics XML [5] document in which specific files and
directories are effectively marked as “do not display.” The second
approach may be advantageous when institutional policy prohibits
redaction of source materials, but there is some desire to provide
access not only to files (which can always be copied out of a disk
image), but also to the original, context-rich file system
environment. In this case, the “access copy” is not a copy in the
strict sense, but an access environment that prevents direct access
to the original disk image, enabling the user to view the structure
of the file system(s) while selectively masking out specific data
and metadata.

Creating Redacted Copies of Disk Images
Our first approach begins with the creation of a redacted disk

image from an existing raw or forensically packaged disk image. A
raw disk image may be redacted (albeit with potential loss of file
system integrity) by writing changes back to the original file. A
forensically packaged image (for example, one encoded using the
Expert Witness format or Advanced Forensic Format) cannot be
altered without compromising the validity of the checksums
embedded within the file.

The original image may be captured raw from the source
medium, or exported from a forensically packaged image – a
facility provided by most commercial and open-source forensic
format processing tools (including libewf and AFFLIB).

The first three steps of the process are automated by a master
Python script, essentially identical to code developed for the
BitCurator reporting tool [21]. The bulk_extractor tool is run with
a user-selected set of scanners; the master script then runs fiwalk
(distributed with The Sleuth Kit) and identify_filenames.py
(distributed with bulk_extractor) to match items located by
bulk_extractor to files in the file system. The output (tab-delimited
line items in a text file) is then reprocessed into XML.

3Archiving 2015 Final Program and Proceedings

 The redactions will be performed at the byte level within the
raw disk image, so these intermediate reports are not strictly
necessary. Their primary purpose is to provide the user a simple
mechanism for editing the final list of items to be redacted (e.g., in
Excel).

Figure 1: Redacting byte sequences within a raw disk image.

The master script creates a raw copy of the disk image and
executes a modified version of the iredact.py script (distributed
with Simson Garfinkel’s DFXML tools) to read each of these
report files in turn and apply a user-specified redaction pattern –
either a string (one or more ASCII characters), or pseudo-random
characters at the relevant byte offsets. A final XML report is then
produced to record each committed redaction alongside the
original pattern and offset.

Use Cases and Concerns

This approach may be compelling to institutions that are
preserving disk images, but do not – by design or mandate – wish
to retain the source image as a preservation object (or wish to
create access surrogates). Each step in the process described in the
previous section produces a log of the analysis and any
modifications in the redacted disk image. Retention of this log
ensures there is a clear record of each alteration, and simplifies the
process of identifying redaction actions should they cause damage
to the file system or individual files.

There are several potential disadvantages to this approach.
First, while tools such as bulk_extractor are capable of finding
features within many common file formats (including those that
have been compressed within certain container formats such as zip
and gzip), many binary-encoded formats will elude such analysis
without specialized plugins to process them (few of which
currently exist for the open source tools discussed here).

Second, edits to raw bytes within the disk image may cause
files to fail to render properly using common tools, or the file
system to fail to mount. As noted previously, most file format-
specific redaction tools manipulate file items directly using
existing APIs or knowledge of the file format structure to ensure
the object will continue to render correctly. Finally, the need to

create a separate copy of the disk image for redaction may be
undesirable when the retaining the original for preservation.

Two additional concerns are the possibility of PII within the
file system metadata, and the presence of private and sensitive
material in unallocated areas in the disk image. Issues concerning
the redaction of PII from file system metadata have been discussed
elsewhere [3]. Altering these items may affect the ability of the
relevant operating system to mount and navigate the disk image.
The redaction process described in the previous section is capable
of scrubbing select data from unallocated blocks, but does not
currently include an option to “zero out” all unallocated areas in
an existing (unmounted) disk image. There are dedicated utilities
to perform this type of scrubbing for specific file systems [22].

Access Overlays for Disk Image Contents
The second approach leaves the unredacted disk image intact

and relies on access controls to securely isolate the user from
access to specific items (files or directories) within that disk
image. In this implementation, access to the file system tree is
provided via a web interface exposing only those items that have
been marked as free of private and sensitive information. Access to
the underlying disk image is moderated via a synthetic file system
view using existing digital forensics software to extract files
directly from the disk image. This approach provides redaction at
the directory and file levels – file system objects are marked as
“unavailable” if they contain PII or other sensitive data identified
by the previously described digital forensics tools or the user.

Figure 2: Masking out files and directories containing sensitive
information.

 As in the previous approach, the disk image is processed
using bulk_extractor, fiwalk, and identify_filenames.py to create an
initial list of PII and sensitive items and link them to files within

4 © 2015 Society for Imaging Science and Technology

the file system. XML-formatted versions of these reports, along
with the DFXML file, are used to produce an annotated DFXML
file in which file items identified in the reports are marked as
restricted.
 The annotated DFXML file is passed to Alex Nelson’s
DFXMLFS [13], which presents the DFXML file as a mounted file
system, rather than the originating disk image. The disk image
(shown in Figure 2) is only accessed (via a file system in user
space mount using fuse-python) when the contents of a file are
requested by another application.

The bca-webtools web interface developed for the BitCurator
Access project allows the user to navigate the view of the file
system (or file systems, for images with multiple partitions)
presented by DFXMLFS. This view is constructed using only the
contents of the annotated DFXML file, effectively separating the
user from restricted contents within the raw bitstream. This view
may also be used to restrict access to file system items that are
marked as unallocated (for example, those that have been deleted
but are still identified as having data extant within the bitstream).

Use Cases and Concerns

The second approach could be appropriate for use cases in
which unredacted disk images are retained as preservation objects,
but access controls to specific contents of those images are desired.
The disk image itself is isolated from the access interface (which
sees only those file system items that are marked as unrestricted in
the DFXML file), ensuring that both file items marked as restricted
and all unallocated areas of the disk image remain protected.

In the implementation presented here, file items are marked
simply as “available” or “restricted” depending on whether they
contain specific features identified by a tool such as bulk-
_extractor. No redactions are performed within the files
themselves. While this ensures that no file or file system is altered
in way that renders it inaccessible, it represents a reduced
granularity of control with respect to the byte stream redaction
method described previously.

Selective access to file-level items extracted from an
unredacted disk image raises some additional security concerns. In
our reference implementation, the bca-webtools application
generates views into the file system solely based on information
read from a DFXML report on that file system. Providing file
download links necessitates (indirect, via DFXMLFS) server-side
access to the unredacted disk image. Possible mitigations for the
risk associated with this include a security audit of the code, or
restriction of access to file items to a secured location (e.g., a
monitored reading room).

Quantifying Successful Redaction
Identifying a completed redaction event is possible when the

baseline set of items to be redacted in an object is known in
advance; the modified bitstream can be tested directly to determine
if the redaction pattern has, in fact, been applied. However, this
basic test may not be the sole acceptable criterion for success. A
file redacted at the block level may be damaged and unrenderable
using standard tools. Likewise, a file system redacted at the block
level may trigger errors in file system integrity checks imposed by
the operating system.

In the block-level redaction approaches described here, we do
not consider whether or not a redaction action affects the ability of
a file to be rendered or a file system to be mounted without error.

The tools produce simple logs to verify the raw number of PII and
other sensitive items automatically detected, and the subsequent
count of actions performed to redact from the raw disk image or
annotate the DFXML structure representing the file system.

The criteria for success may also include whether or not the
redaction procedure can be easily reversed. Yet even this simple
case may pose problems. Even if a unique-length string is replaced
with default-length substitute text, it may still be possible to infer –
from sentence structure or document layout – pertinent
information about the redacted contents from the original
document.

For large acquisitions, manually verifying redaction
performance may be impractical. This is problematic when
different PII and sensitive data identification tools perform at
different levels of accuracy and precision, although some effort
has been made in the past to quantify the performance of open
source tools against existing commercial solutions [6].

Comparing Digital Objects to Identify
Redactions and Discrepancies

LAMs working with born-digital materials are tasked with
maintaining records of provenance and ensuring a clear chain of
custody for acquired materials. Yet there are few mechanisms to
ensure that any given copy of a digital object (whether it is
acquired on digital media or transferred over the network) is both
authentic and unredacted. There is ongoing work in the digital
forensics field to develop tools that perform statistical analysis of
block-level data contained within disk images to try and
distinguish between compressed, encrypted, and randomized data
within the context of the file system [7]. The techniques we have
described here depend on recordkeeping to ensure a clear history
of any redaction actions undertaken.

When working with “data at rest” – here, data that is acquired
from fixed or removable digital media and stored within a
repository) – the simplest way to ensure a clear record of any
alterations or redactions performed is to retain a copy of the
forensically acquired (using a hardware write-blocker) bitstream
from a given device. In cases when this is impossible or
impractical – due to device size, large quantities of unneeded or
unwanted data, or other considerations – retention of the file
system metadata alone can still be useful, as it provides a record of
original file sizes on disk, file names, and other metadata –
including cryptographic checksums for individual files that will
change following a redaction.

Future Directions
 Creation of redacted disk images is not currently a common
practice in collecting institutions, and there are a number of
limitations associated with the approaches described here. In this
section, we discuss possibilities for future development of
redaction tools in the BitCurator Access project as well as
implications for professional practice.
 Redaction of a raw disk image has the potential to leave the
file system – or file items contained within the file system – in an
inconsistent state. Currently, the tools described here do not
perform any validation on the structure of the disk image after
redacting the raw bitstream. The addition of a file system
consistency check tool such as fsck (both prior to and post-
redaction) is planned for future versions.

5Archiving 2015 Final Program and Proceedings

Similarly, the tool chain does not currently attempt to verify
the consistency of individual files (i.e., whether the format
structure remains viable post-redaction). Tools developed for
digital preservation, such as FIDO and JHOVE2, provide this
functionality for certain formats, at the expense of considerable
additional time overhead.

With respect to identification of PII and sensitive data, the
tools described here rely heavily on pattern matching techniques,
but they do not perform any linguistic or semantic analysis of the
content. This may be a concern as named entities – people, places,
and things – are likely to be common redaction candidates for
preservation institutions. The additional of a natural language
processing model as a purpose-built plugin for bulk_extractor or as
a standalone processing stage could assist in identifying these
items.
 The approaches described here also could be enhanced to
address more complex needs, including redaction of file system
metadata (such as timestamps and filenames) while still retaining
the ability to browse the file system directly, and encrypting –
rather than scrubbing – arbitrary byte sequences within the disk
image (similar functionality is proposed but not currently
implemented within the iredact.py script).

Finally, it is important to recognize that the management of
private and sensitive information within collections is a set of
processes within an ever-changing landscape. Given the ability to
infer data values through comparisons across data sources, privacy
protection cannot be fully reduced to the redaction of fixed,
discrete sets of data elements [12]. Protection of the interests of
relevant stakeholders is a long-standing responsibility of LAM
professionals, which has always involved professional judgement
and response to unexpected contingencies. Responsible curation
of born-digital data must be attentive not only to specific patterns
in the data, but also to the role of those patterns in the materials’
context of creation and use [2] and the potential “impact level”
(risks from disclosure) of those patterns [10]. We are designing
tools and guidance to automate as many of the discrete tasks as
possible, so LAM professionals can focus their attention on
higher-level issues related to preservation, description and
provision of access to born-digital materials.

Conclusion
We have presented tools and techniques that support two core

uses cases concerning redaction of and access to disk images. The
first allows PII and sensitive data to be redacted from a raw copy
of an existing disk image using modifications of existing open
source digital forensics tools. The second provides select access to
file and directory items within a disk image using a synthetic file
system view in a web interface, masking out items containing PII
and sensitive data at the file level but leaving the original disk
image untouched.

These approaches address two ongoing needs in libraries,
archives, and museums working with born-digital media. The
ability to permanently redact data from complex digital objects
such as disk images while minimizing impact to the structure and
organization of the file system; and the ability to semi-
automatically create online access environments that allow users to
browse the natural structure of a disk image while securely
preventing access to file-level items containing sensitive and
restricted materials.

Acknowledgements
We would like to thank the other members of the BitCurator
Access team (Alex Chassanoff and Sunitha Misra) and others who
have provided input, including those serving on the BitCurator
Access Advisory Board. BitCurator Access is funded by a grant
from the Andrew W. Mellon Foundation.

References
[1] Behrnd-Klodt, Menzi L., and Peter J. Wosh, eds. 2005. Privacy &

confidentiality perspectives: archivists & archival records. Chicago,
IL: Society of American Archivists.

[2] Bingo, Steven. 2011. "Of Provenance and Privacy: Using Contextual
Integrity to Define Third-Party Privacy." American Archivist 74:506-
521.

[3] Emerson, Casey. Automating Disk Image Redaction. UNC SILS
Masters Paper. Last accessed December 7, 2014
https://cdr.lib.unc.edu/record/uuid:5108ce54-27f4-42a0-b678-
c3b89f69cd69

[4] FBI redaction manual. RT.com. Last accessed December 7, 2014
http://rt.com/usa/fbi-secret-manual-library-congress-580/

[5] Garfinkel, S. Digital Forensics XML and the DFXML toolset, Digital
Investigation, 8 (2012), 161-174.

[6] Garfinkel, Simson, Digital media triage with bulk data analysis and
bulk_extractor. Computers and Security 32: 56-72 (2013)

[7] Garfinkel S, Nelson A, White D, Roussev V. Using purpose-built
functions and block hashes to enable small block and sub-file
forensics. In: Proceedings of the tenth annual DFRWS conference.
Portland, OR: Elsevier; 2010.

[8] Lee, Christopher A. and Kam Woods. 2012. Automated Redaction of
Private and Personal Data in Collections: Toward Responsible
Stewardship of Digital Heritage. The Memory of the World in the
Digital age: Digitization and Preservation, 2012. Vancouver, BC.

[9] MacNeil, Heather. 1992. Without consent: the ethics of disclosing
personal information in public archives. Chicago, IL: Society of
American Archivists.

[10] McCallister, Erika, Tim Grance and Karen Scarfone. 2010. Guide to
Protecting the Confidentiality of Personally Identifiable Information
(PII). National Institute of Standards and Technology.

[11] McIntyre, Joshua J. Balancing Expectations of Online Privacy: Why
Internet Protocol (IP) Addresses Should be Protected as Personally
Identifiable Information. DePaul Law Review 60 (2011): 895-936.

[12] Narayanan, Arvind, and Vitaly Shmatikov. 2010. "Privacy and
Security: Myths and Fallacies of 'Personally Identifiable
Information'." Communications of the ACM 53 (6):24-26.

[13] Nelson, Alex. 2015. Source code retrieved from GitHub:
https://www.github.com/ajnelson/dfxmlfs

[14] Personally identifiable information. Wikipedia. Last accessed
December 7, 2014
http://en.wikipedia.org/wiki/Personally_identifiable_information

[15] Ranker, Ben. 2009. Redacting Software Recommendation for MARBL
Digital Archiving. Emory Libraries Tech Know-how. Last accessed
March 16, 2015.
https://techknowhow.library.emory.edu/blogs/branker/2009/06/03/red
action-software-recommendation-marbl-digital-archiving

[16] Redwine, Gabriella et al. 2013. Born-Digital: Guidance for Donors,
Dealers, and Archival Repositories. Council on Library and
Information Resources. Last accessed December 7, 2014.
http://www.clir.org/pubs/reports/pub159/pub159.pdf

[17] Roussev, Vassil. An Evaluation of Forensic Similarity Hashes. Digital
Investigation 8 (2011): S34 - S41.

[18] UK National Archives Redaction Toolkit. UK National Archives. Last
accessed December 7, 2014
http://www.nationalarchives.gov.uk/documents/information-
management/redaction_toolkit.pdf

[19] When to redact AIPs vs DIPs in digital archives workflows? Quanda
forum. Last accessed December 7, 2014

6 © 2015 Society for Imaging Science and Technology

http://qanda.digipres.org/121/when-to-redact-aips-vs-dips-in-digital-
archives-workflows

[20] Woods, Kam, Christopher A. Lee and Simson Garfinkel Extending
digital repository architectures to support disk image preservation
and access. Proceedings of the 11th Annual International ACM/IEEE
Joint Conference on Digital libraries, 2011.

[21] Woods, Kam, Christopher Lee, and Sunitha Misra. Automated
Analysis and Visualization of Disk Images and File Systems for
Preservation. In Proceedings of Archiving 2013 (Springfield, VA:
Society for Imaging Science and Technology, 2013), 239-244.

[22] Zerofree: Keeping File System Images Sparse
http://intgat.tigress.co.uk/rmy/uml/index.html Last accessed April 2,
2015

Author Biographies
Kam Woods is a Research Scientist at the School of Information and

Library Science at the University of North Carolina at Chapel Hill. His
research interests include long-term digital preservation, digital archiving,
and the application of digital forensics tools and techniques to archival
and preservation data analysis and management.

Christopher (Cal) Lee is an Associate Professor at the School of
Information and Library Science at the University of North Carolina at
Chapel Hill. His primary area of research is the long-term curation of
digital collections. He is Principal Investigator for the BitCurator Access
project and editor of I, Digital: Personal Collections in the Digital Era
published by the Society of American Archivists.

7Archiving 2015 Final Program and Proceedings

