

Building Scalable Web Archives
Leïla Medjkoune; Stanislav Barton; Florent Carpentier; Julien Masanès; Radu Pop; Internet Memory Foundation; Amsterdam,
Netherlands

Abstract
This paper aims at introducing the Internet Memory

Foundation platform based on its distributed infrastructure and the
associated tools and workflows that facilitate data management
and preservation actions at large scale. IMF's main concern over
the past years has been related to scalability issues in terms of
crawling, indexing, preserving and accessing content. To answer
these issues, the Foundation developed its own crawler and built a
new infrastructure.

This paper aims at presenting our infrastructure and crawler
and at sharing challenges met while building them as well as the
approach taken to solve preservation issues inherent to scalable
archives. It will also highlight new horizons arising for web
archives in relation to analytics use cases.

Introduction
The Internet is a media of our time. Its importance as well as

its estimated size grows continuously together with the diverse
means of publication and an exponential number of publishers. As
this ephemeral and heterogeneous content is a key resource for
future generations, it is essential to tackle its intrinsic capture,
access and preservation challenges. Many cultural institutions
launched web archiving programs in the past years but most of
them choose the selective approach rather than targeting larger
portions of the web. If this remains valuable, we believe it is not
sufficient to preserve significant fragments of the information
deluge produced through Internet; archiving at large-scale
therefore seems essential.

To answer these challenges and build a valuable memory of
the web, the Internet Memory Foundation chose to develop a
shared platform based on a distributed infrastructure and crawler,
associated to tools and workflows that facilitate data management
and access as well as preservation actions at large scale. This paper
aims at introducing these and at sharing lessons learned as well as
future developments planned.

Large-scale crawls
As introduced above, the growing size and complexity of the

web and of content published on the Internet constantly raises new
challenges. If more and more preservation institutions conduct a
web archiving project (in-house or externalised), these projects
consist in most cases in crawling regularly a short list of known
websites or at most a portion of a given national domain. Reasons
for doing so often come from legal restrictions or resources and
budget limitations. But beyond these limitations, the technical
aspect should also be taken into account as crawling at large-scale
has proven to be anything but an easy process. It requires
experimented human resources that can build adequate

infrastructures, and that can implement tools and rather complex
workflows. The crawl quality will then depend on the team
knowledge of these tools and of the Internet that will enable them
to avoid, as much as possible, unwanted content and to get the best
crawl quality through optimised parameters. Indeed, the larger the
amount to capture is, the more complex it is to keep a correct level
of temporal coherence within the web archive and manage URLs
discovered through what is commonly called the crawl frontier
(URL store).

To attempt to solve these issues, the Internet Memory
Foundation developed its own crawler, MemoryBot, in 2010 with
the support of the EU funded LAWA project (http://www.lawa-
project.eu/) and through an initial collaboration with the University
of Milan [2], and constantly improved it since then depending on
internal needs. MemoryBot is built in Erlang (with a combination
of Python and C), a language commonly used for distributed, fault-
tolerant systems. The data and process management are also
facilitated by the use of Erlang built-in database, Mnesia, which
centralises modifications and/or corrections and spreads them
thoroughly within the system. MemoryBot is designed to be fully
distributed (based on consistence hashing) and produces standard
WARC files.

Figure 1: MemoryBot architecture

Figure 1 shows the main processes on each cluster node. The
rectangles are associated to processes with same function when the
ovals represent individual processes or subsystems made of many
processes.

The fetcher controller's role is to create fetchers that will then
crawl a set of URLs. It requests the URL store for a batch of
URLs, all belonging to the same pay level domain (PLD), resolves
the domain name to an IP address and ensures no other fetcher in
the entire cluster is crawling this IP address. It then spawns a
fetcher and passes it the URL batch. Each fetcher receiving a batch
of URLs to crawl also receives parameters to be applied (e.g.
robots.txt file, politeness, etc.). This way each fetcher crawls URLs
sent following the defined parameters and respecting the required
politeness delay between each fetch.

For each resource, three main steps are performed:
1. Fetching (HTTP request);

138 ©2014 Society for Imaging Science and Technology

2. Analysing the document according to its type in search of new
URLs.

3. Writing the content plus extracted or derived information into
a WARC file

4. Filtering according to the scope configuration before sending
to the distribution module.

In order to be scalable at a reasonable cost, a crawler requires

to be distributed and to have a URL store that can scale up to
billions of URLs. The distribution has always been a top
requirement as our initial goal was to handle the crawling of very
large portions of the web (several Top Level Domains) much faster
and in a more efficient manner than any other tested crawlers had
allowed us to do till then. Large-scale crawls performed so far
showed very good results, such as an impressive throughput and a
rather low performance drop as a crawl progresses.

Figures 2 and 3 below show part of our crawler's monitoring
interface on a running large-scale crawl. The period displayed on
both figures is approximately of 10 days.

Figure 2: Number of fetchers evolving during crawl

Figure 2 shows how the number of fetchers drops over time as
discovered resources are crawled. MemoryBot crawls dozen
million resources per day with an average rate of around 100
WARC writes per second per server (figure 3).

Figure 3: Number of WARC writes per second

As long as the number of URLs is small and everything fits in
memory, traditional centralised databases are sufficient. However,
when scaling to billions of URLs, to keep the number of servers
and the amount of RAM low, the URL store design becomes
critical. MemoryBot's URL store design borrows a lot from
DRUM, as described in [1]. It relies on performing batch
operations on sorted URL files, leveraging the good performance
of sequential reads on low-end hard disks. MemoryBot URL store
is therefore essential when targeting to achieve large-scale crawls.
As a web archiving foundation, IMF required these large-scale
crawls to reach a good level of quality. If our primary goal was
indeed to handle large-scale crawls, the quality of these crawls
remains critical for us in relation to our preservation and
accessibility mission. To add what can be called archiving quality

to MemoryBot crawls and to allow more flexibility in terms of
scoping (e.g.: to fit researcher needs), we added a number of
features to our crawler. Some were considered as a baseline
requirement such as the support of HTTPS, retries on server
failures or streaming of large files. It has a fast C implementation
of a comprehensive and configurable URL canonicalization. It also
allows to base crawling priorities upon URLs whitelisting and
blacklisting or even trap detection as explained below. It enables
detection of the real MIME type and of language documents and
can extract metadata from HTML pages (e.g.: outlinks with type).
It also employs a fully-fledged and extensible per-domain
configuration framework with parameters including budget,
minimum and maximum delay between two fetches. Crawler
fetchers subscribe to updates of parameter values and use the new
configuration immediately. This multi-store model therefore
supports more complex requirements, such as for instance, fast
revisit of RSS feeds to collect regularly newly published resources.

Further large-scale crawls are planned for 2014 that should
allow testing and improving MemoryBot further. Several features
could indeed be improved such as the management of discovered
URLs for instance. The issue met with management of URLs
discovered is amplified by the number of domains we crawl
concurrently. For very large-scale crawls, there is always a risk of
having too many URLs discovered in comparison with what can
effectively be crawled. Among these, (i) many can be identified as
crawler traps and should be avoided altogether; (ii) others would
qualify as quality issues. Indeed, from the archiving and human
perspective, the website visual structure (homepage, level 1, 2 etc.)
is meaningful. Crawling URLs in a random order within one single
PLD might lead to collect deep level pages and miss top ones (if
not all URLs are exhausted during crawl).

(i) To avoid traps we currently use two methods, one being
URL pattern identification and the other duplicate detection inside
each PLD.

Dealing with (ii) requires supporting priorities in the URL
store and determining the priority of each resource. MemoryBot
has priority levels support in the URL store, the top priority levels
being crawled more often than the lower levels. We already send to
the top priority level all URLs with an empty path (assumed to be
home pages), when all other URLs will be sent to lower priority
levels. Finer grained prioritisation can be investigated, such as,
implementing breadth-first within PLDs or even, applying
classification methods.

Internet Memory platform
Our platform has been developed in collaboration with the

Internet Memory Research, a spin-off of the Internet Memory
Foundation, which is specialised in web-scale crawling and data
extraction. The IMF infrastructure is based on a sophisticated
distributed storage, relying on HBase (https://hbase.apache.org/)
and HDFS (Hadoop file system) that automatically manages
replication and fault-tolerance. IMF platform is designed to be
scalable and can easily process billion of data items. Both the data
repositories and the analytic processes operate in a distributed
infrastructure, which can be extended to cope with very large
datasets, up to web scale volumes.

Archiving 2014 Final Program and Proceedings 139

Figure 4: IMF platform

From the web archiving perspective, our platform offers
several advantages in comparison to traditional storage and
management system. Once data is crawled, all WARCs produced
by MemoryBot are stored directly into HBase/HDFS: all WARCs
metadata are extracted and stored into HBase before storing the
WARC itself into HDFS. At this stage, the system takes care of
data replication automatically; ensuring data is safe and preserved.
This means no tool or additional workflow is required to replicate
and preserve data and metadata, which is of great importance when
dealing with a very large amount of resources. The use of HBase
to access crawled content also proved to provide better
performance at access time as the storage structure eases and
speeds up search within web content.

In addition to improving existing access and storage
replication, this new infrastructure also facilitate indexing
processes as well as data process (made through batch process) and
opens new horizons in terms of management and access to data
collected at large scale such as for instance data characterisation
and data mining (analytical APIs, filters, extractors, etc.). Indeed,
HBase is by definition a distributed key value store
(multidimensional map) that allows:
• Inherent versioning (timestamped values)
• Real time access (cache, index, key ordering)
• Column oriented storage
• Seamless integration with Hadoop

This means an inherent temporal aspect for each data stored
(versions) that is essential when looking at analysing web content
within an historical web archive. It also means having several
views on same data: raw, extracted and/or analysed level, which
allows treatment of raw data as well as treatment of pre-processed
data in a very easy and natural manner. A typical web archiving
use case would be to extract MIME type information and store it
into HBase to allow later fast process. Once data is stored it can be
processed and reprocessed any time following any use case and
need. Another example of a possible use case would be to perform
full text indexing of crawled data, to extract text only content and
store it into HBase. Once done, text resources can be processed in
the same way and crossed reference with any other data or
metadata available within HBase.

Extraction and filtering processes are organised to minimize
the overhead of data access and network exchanges allowing more
extensive characterization and data mining actions. Indeed, if
systems are essential to process data at large scale, infrastructure
costs cannot be ignored. In the past years, IMF worked actively on
its infrastructure (manufacture and design) through a collaboration
with a technology company specialised in Green IT, NoRack
(http://www.no-rack.com/), to develop a new generation of servers
and infrastructure (see figure and build an efficient and green data
center dedicated to massive storage. This allowed us not only to
reduce our storage and processing costs, which is crucial when
preserving petabytes of data and providing access to it, but also to
build a highly scalable infrastructure with a very low consumption

that does not require cooling (free
cooling system). The free cooling
system is enabled through a very low
thermic diffusion (for 72 nodes, our
data center is set between 5300W and
6300W depending on servers' type
and configuration) and thanks to an
innovative design, which turns heat
toward a simple ventilation system.
The Power Usage Efficiency is under
1,2, which is quite low compared to
the average of 1,65 according to the
Uptime Institute 2013 survey [3]
(survey of around 1000 data centers,
the average was of 1,89 in 2011). All

archives users share this infrastructure, which ensures maximizing
storage use, reducing the number of devices requires and saving
energy and cost while allowing virtualization of processes, better
performances and faster processes.

Although moving to these new infrastructure and storage is
quite challenging, we believe it will allow us to scale in a faster
manner and will enable us to share more content with web archive
users, up to providing specific access to researchers, not only to
access content but also to experiment with collected resources.

Long-term preservation and quality control
Beyond characterisation, data mining and access challenges,

the long term preservation and quality control of crawled web
content also gets more challenging as the size of web archives
grows. Indeed, as crawlers and storage infrastructures allow a more
comprehensive capture of the Web, quality assurance methods and
tools must evolve.

As part of the EU funded project Scalable Preservation
Environment (SCAPE: http://www.scape-project.eu/), the Internet
Memory Foundation takes part to experiments and developments
aiming at improving management, characterisation and quality
assessment of data at large scale, with a focus on web resources. If
characterising content is a pressing issue, controlling the quality of
crawls is another one. Here again, the growing size of crawls and
web archives makes it difficult to evaluate the quality of content
crawled. Developing scalable quality assurance methods is
therefore crucial. Indeed, quality assurance work is currently very
costly and time consuming as it is most of the time done manually,
if done at all. As time goes by and technologies evolve, questions

Figure 7: NoRack servers

140 ©2014 Society for Imaging Science and Technology

about the accessibility to content crawled also becomes more and
more pressing for preservation institutions. Within the SCAPE
project, and as a leader on the QA applied to web content work
package, IMF worked jointly with the University Pierre et Marie
Curie (http://www.upmc.fr/), to enhance and adapt a visual and
structural comparison tool with the aim of applying it to web
archiving. Our QA team worked closely with the UPMC team and
annotated hundreds of pairs of URLs to train the visual comparison
open source tool, Pagelyzer (http://www.scape-project.eu/tools).

Figure 6: Pagelyzer schema (UPMC)

The idea behind this is not only to cut QA costs but also to
improve processes by applying an automated layer to our QA
methodology. QA applied to web archives can currently be
conducted by several means. It can be done by checking crawl
statistics during or after a crawl, to find out if any crawling issue
arose. Such statistics can for instance be the size of the crawl in
comparison to known figures (estimated size of such national
domain). Another type of QA consists in checking that resources
belonging to a targeted domain are indeed captured. To automate
this process, some web archives tried to create tools to detect
missing content such as 404s by using proxies or by executing web
pages. If all these methods are extremely valuable when it comes
to checking selective and/or large-scale crawls, these do not allow
checking rendering issues met by potential end users.

The Internet Memory, as part of its web archiving activities
applies several QA methods, including a visual comparison of
crawled web pages to their live version with a minimum of two
different browsers. Our trained QA team checks samples of content
crawled in a methodical manner, based on our knowledge of
crawling and access technology used, as soon as possible after a
crawl is complete. Within SCAPE, we tried to mimic this human
visual comparison of web pages to make it applicable at large-
scale. The Pagelizer tool allows comparing two versions of a web
page rendered through an access tool automatically. This can be
done visually, structurally or using both comparison algorithms. As
shown in the Pagelizer schema provided by UPMC (figure 6), the
tool generates a similarity score once comparison is made that
classifies pairs of URLs controlled into two lists: similar pages and
dissimilar ones. As scores are based on our QA team annotations,

used to train the Pagelyzer tool, these are very close to the human
evaluation. This means that pages will only be classified as
dissimilar if results are significantly different (for example if a
resource is not rendered on the page). This tool thus leverages QA
to the level of rendering detection issues and opens new
possibilities in term of QA processes for regular basis checks as
well as for longer-term preservation actions.

To allow processing at large scale, IMF developed a wrapper
application around the Pagelyzer technology. This application
orchestrates the main building blocks required for the comparison
to be performed: Selenium framework
(http://docs.seleniumhq.org/) that takes screenshots of web pages
and Pagelyzer that performs comparison. The Selenium framework
was chosen because it can manage several instances in parallel as
well as different browsers and browsers’ versions. This is a must
have when checking rendering quality which can vary from one
browser to another (and the same with browsers' versions) as
explained above. The current workflow is as shown in figure 7 and
as follows:

1. Web pages screenshots are automatically taken using
Selenium framework (using one or several browsers and
browsers versions).

2. Visual comparison is performed between pairs of
screenshots using the Pagelyzer tool.

3. Rendering issues are detected within web pages, based
on the comparison results.

The browser versions currently experienced and tested are:

Firefox, Chrome, Opera and Internet Explorer. The comparison
tool is implemented as a MapReduce job to parallelize the
processing of the input. The input is a list of URLs with a list of
browser versions that are used to render the screen shot. The output
is made available through a set of XML files where each file
represents one pair of browser shots. By implementing this
wrapper application and implementing it on our platform, we
already managed to cut the processing time to half in comparison
to our first tests.

Figure 7: Wrapper application

Archiving 2014 Final Program and Proceedings 141

We currently test workflows where rendering is automatically
checked through several browsers within our production platform
with the aim of using this on a large sample of our regular crawls
and of improving the whole web archive quality by limiting,
through another mean, loss of content. So far tests were made on
about 13 000 entries with the supported browser versions - Firefox
and Opera. The correctness benchmarking made as part of the
project activities showed a result of around 75% of correct
assessment. The average time required to complete the whole
workflow is around 4 seconds per pair compared (2 seconds per
snapshots on average and 2second for the comparison). Although
performance, robustness and correctness results must be improved
by the end of SCAPE project, we believe this application will be of
a real use to web archives in the future.

We also wish to test more complex workflows where
rendering issues through browser and browser versions could be
stored to enrich our knowledge of the technological landscape
evolution and hopefully help triggering preservation actions in the
future.

Conclusion
As web technologies evolve and the Internet grows in size and

complexity, institutions such as web archives or national archives
and libraries face new challenges. As one of them, the Internet
Memory Foundation tries to tackle these challenges by taking the
risks national bodies cannot always take. We build innovative
means of capturing, managing, accessing and preserving web
content at large scale. We believe the role of web archives is to
preserve as much web content as possible, moving from the
selective to the broad crawling approach. If doing so requires
building complex and distributed tools and infrastructures, it also
means enhancing tools allowing scoping, characterisation and
quality assurance of web content crawled.

Crawling and preserving content at such scale also implies
developing new methods and tools for this content to be easily
accessible and useful to the research community as well as to end
users. This is what IMF is aiming at through its shared platform.
We indeed believe allowing a fast and easy analytical treatment of
data will be crucial for research in the near future.

.

142 ©2014 Society for Imaging Science and Technology

References

[1] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov, "IRLbot: Scaling to

6 Billion Pages and Beyond". ACM Transactions on the Web, vol. 3
(2009).

[2] Paolo Boldi and Bruno Codenotti and Massimo Santini and Sebastiano
Vigna , "UbiCrawler: a scalable fully distributed Web crawler".
Softw., Pract. Exper. vol. 34, 711-726 (2004).

[3] Uptime Institute,"2013 Data Center Industry survey, 4, (2013)

Author Biography

Leila Medjkoune is graduated from the French National School of
Library and Information Sciences (ENSSIB) with a Master's Degree. She
joined Internet Memory in 2007 and is currently Head of Web Archiving
Services. She manages all stages of quality archiving, from capture, to
quality assurance and designs new services, tools and methodologies to
improve Web Archives. She actively participates to EU funded projects,
such as LivingKnowledge, LIWA or SCAPE, by offering a functional expert
view.

Archiving 2014 Final Program and Proceedings 143

