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Abstract 

In this paper we present our recent software development, 
autoSFR, with new extensions to the previous program for 
automated scanning resolution determination, which was 
published in the paper “Computer Assisted Image Analysis for 
Objective Determination of Scanning Resolution for Photographic 
Collections – An Automated Approach” presented at Archiving 
2013. The extension works include the algorithm robustness and 
accuracy verification by statistical tests, the analysis of denoising 
effects on the sampling efficiency computation, and the 
construction of a user friendly interface.  

1. Introduction  
Imaging quality analysis is crucial in digital preservation for 

archiving applications. A variety of standards have been 
established to assess different quality factors of imaging products, 
including resolution [1, 2, 3], intensity (e.g., OECF) [4] and color 
[5, 6] accuracy, noise [7], dynamic range [8], sharpness [1, 9], and 
geometric distortion [10], just to name a few. In this paper we 
focus on image sharpness assessment, which is probably the most 
important quality factor due to its role in determining the amount 
of detail that an imaging system can reproduce1. Furthermore, 
image sharpness is an indicator of imaging resolution.  

 

   
Figure 1. Examples of targets for MTF/SFR analysis. From left to right:  
sinusoidal, slit and slanted edge targets. 

Image sharpness can be measured with subjective [11] and 
objective metrics [12, 13, 14], among which the modulation 
transfer function (MTF) [12, 13] or spatial frequency response 
(SFR) [14] are the most commonly used. MTF is defined as the 
modulation ratio of the output image and the ideal image, and SFR 
is a measurement of the effective system MTF relative to the test 
object feature used. Traditionally there are two types of methods to 
measure the MTF/SFR: direct methods evaluate the system 
response to periodic patterns (e.g., sine pattern bars); indirect 

                                                                 
 
 

1 Imatest – Sharpness: What is it and how is it measured? 
http://www.imatest.com/docs/sharpness/  

methods measure the edge spread function (ESF) of the system 
using slanted edges, or the line spread function (LSF) using slit 
targets, on which a frequency transform (e.g., Fourier transform) is 
then applied to derive the system frequency response. Figure 1 
shows examples of the above three targets (test charts). Practically, 
indirect methods are always used due to their simple 
implementation. An excellent review on those approaches may be 
seen in [12]. 

The derived MTF/SFR provides a comprehensive overview of 
the imaging system performance across the whole frequency 
spectrum. Figure 2 compares two SFR curves. It can be seen that 
the system with red curve outperforms the one represented by the 
blue curve on both low and middle frequency signal reproduction. 
The interested reader is referred to the Federal Agencies 
Digitization Guidelines Initiative (FADGI)2 for the details of SFR 
curve analysis. For a more direct assessment of imaging sharpness 
or comparison among different systems/images, we may compute 
the summary statistics from a SFR curve, e.g., sampling efficiency 
[15], which is currently embedded in the commercial software 
DICETM. Given an input image, users are required to manually 
select the regions of interest (ROI) in DICETM, i.e., regions with 
clear edges and low noise, for the SFR and sampling efficiency 
computation, which can then be used in the digitization production 
to determine an appropriate scanning resolution to capture 
information content. However, this process works well only for 
certain specifically designed target images which consist of small 
amount of edge regions, e.g., the GoldenThread Target3. It is 
infeasible to manually identify all the suitable ROIs in large 
collections of photographic images, due to the high labor cost, and 
the large intra- and inter-observer variations. In order to overcome 
these problems, we developed an automated image analysis 
approach [16] to derive an appropriate spatial or scanning 
resolution from image statistics. With predefined constraints on 
edges (e.g., contrast, orientation, and homogeneity) and SFR (e.g., 
curve shape and magnitude), our method identifies all the valid 
image edges, computes the SFR and sampling efficiency for each 
edge, and finally derives the optimal scanning resolution. In this 
paper we present our recent work to extend and upgrade this 
program: conducting statistical tests to verify the algorithm 
robustness and accuracy, analyzing the denoising effects on the 
SFR and sampling efficiency accuracy, and constructing a user 
friendly interface for the newer version software, autoSFR. 

  

                                                                 
 
 

2 Guidelines – Federal Agencies Digitization Guidelines Initiative. 
http://www.digitizationguidelines.gov/guidelines/ 
3 Image Science Associates. http://www.imagescienceassociates.com/ 
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Figure 2. Examples of SFR curves derived from slanted edges. 

This paper is organized as follows: Section 2 briefly 
introduces image quality and sharpness assessment technologies. 
Section 3 presents our extension works to the program and the new 
updated software, autoSFR. Experiment results on a large set of 
samples are presented in Section 4. We draw conclusions in 
Section 5. 

2. Background 
As introduced in Section 1, image quality assessment includes 

a variety of factors, such as sharpness, noise, dynamic range, color 
accuracy, and geometric distortion, which are defined by a series 
of corresponding international standards. In this work we focus on 
image sharpness analysis. There are usually three major 
sharpening processes4 in a typical imaging pipeline: capture 
sharpening (through camera setting adjustment) for high 
resolution, image sharpening for better acutance [17], and output 
sharpening for print or display purposes. Image sharpening is 
usually implemented through image edge enhancement, such as 
filtering techniques using unsharp masks and inverse image 
diffusion. Output sharpening constructs profiles for individual 
output devices (printer or monitor) for the optimum print or 
display. With the objective to evaluate the imaging quality, we 
analyze image sharpness produced by the first type of sharpening, 
which is uniquely determined by the imaging systems.  

Following the works in [12, 13, 14], we employ the 
commonly used MTF/SFR model to assess the image sharpness. 
Given square wave grating of different frequencies f (measured by 
the number of lines/mm), modulation is defined as 

                     Modulation = (Imax – Imin) / (Imax + Imin)                   (1) 
 

where Imax and Imin are the maximum and minimum intensity 
measured in the image. The MTF is then defined as a function of 
the frequency, which is the modulation ratio of the output image 
and the input (ideal) image at different frequency measurements. 
Thus the value range of SFR is from 0 to 1, and the value 
monotonically decreases as the frequency increases. In practice, 

                                                                 
 
 

4 Cambridge in Colour – Photography Tutorials & Learning Community. 
http://www.cambridgeincolour.com/    

scanners and cameras always apply certain image enhancement 
algorithms that are embedded into the imaging system to improve 
the sharpness quality in the output images, i.e., better acutance. 
This artificial sharpening also increases system responses (MTF 
values) at certain frequencies. For the objective of imaging quality 
assessment, such sharpening should always be avoided to 
maximally reflect the system true characteristics (i.e., optic and 
electronic hardware performance) in detail reproduction. In 
addition, such “soft” sharpening may cause over-sharpened 
images, with irritating halos at image edges.  

Imaging quality assessment is usually implemented with 
specifically developed targets that consist of particular patterns, 
for example, the Gretag-Macbeth ColorChecker® SG for color 
accuracy assessment, a series of gray scale step wedges with 
increased density for OECF derivation and noise estimation, a 
Siemens Sinusoidal or Bitonal pattern for MTF/SFR computation 
[18], dead leaves pattern for texture SFR analysis [19], etc. In our 
digital preservation and conversion production, we utilize the 
GoldenThread Target to conduct a comprehensive imaging quality 
analysis in DICETM. This follows the procedures listed in the ISO 
12233 [1] to compute the SFR: 1) locate the slanted edge regions; 
2) compute the corresponding ESF (the profile across the edges) 
and LSF (the derivative of the ESF); and 3) calculate the Fourier 
transform of the LSF to derive the SFR. Slanted edges are used 
here to produce more samples on the ESF profile for more accurate 
LSF computation. This is implemented by projecting all points on 
multiple lines crossing the edge to one line, which produces sub-
pixel resolution on the profile. Using such oversampled ESF, we 
can obtain more accurate results on the LSF and thus the SFR 
values. As indicated in the Introduction, such manual analysis 
cannot handle a large number of samples to determine scanning 
resolution. In particular, the labor and time cost will be 
significantly increased for challenging conditions like weak edges 
and noisy and inhomogeneous edge regions. Our early work [16] 
was proposed to overcome these problems for consistent results. In 
this paper, we further validate the accuracy and robustness of the 
algorithm. 

The traditional MTF and SFR measurements provide a 
relatively simple model to conduct objective assessment of image 
sharpness. On the other hand, subjective measurements have been 
developed to address the factor of human visual perception (e.g., 
human eye’s contrast sensitivity function), such as the subjective 
quality factor [11] and acutance [17]. Moreover, with recent 
research on human visual system (HVS), more advanced models 
[20, 21] have been proposed to simulate human visual function. 
The interested reader is referred to [20] for an overview of no-
reference image sharpness metrics. 

3.  Extended Work 
This section presents the recent extension to our previously 

developed program [16] for automatic determination of the level of 
information content for photographic collections, and a 
corresponding spatial resolution for digitization. The algorithm 
description can be seen in Figure 2 of [16], which consists of main 
functions of valid edge detection, SFR and sampling efficiency 
computation, and scanning resolution determination. Our extended 
works include:  

• Conducting statistical hypothesis tests to verify the 
robustness and accuracy of the program. We compare 
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the results from manual identification of edge regions by 
a content expert (the second author) and the automatic 
identification of edge regions by the program. With 
statistically similar results, we draw the conclusion that 
our program produces results comparable to the expert.  

• Analyzing the denoising effects on SFR and sampling 
efficiency computation. For real sample collections, we 
always observe that the edge regions are noisy. We 
conduct this exploration with different denoising settings 
and determine that denoising has no significant effects 
on the SFR and sampling efficiency computation. 

• Developing a user friendly interface for software 
distribution among different organizations. 

In the extended work, we follow the algorithm flowchart in 
[16]. The program detects valid edges in each block of an input 
image sequentially, from which the corresponding SFR and 
sampling efficiency values are computed. Again, we apply the 
same edge, region, and SFR curve constraints on intensity and 
contrast to identify the valid edges.  

The first experiment applies the two-sample t-test and F-test 
to check if two independent samples come from normal 
distributions with the same mean and variance, against the 
alternative that the means and variances are unequal [22]. Here the 
two samples are the sampling efficiencies computed from the valid 
edges identified by our expert and the program, respectively. 
Therefore, for the two-sample t-test, we have 

H0: μe = μp; Ha: μe ≠ μp.           (2) 
 
where μe represents the sampling efficiency mean obtained from 
the expert samples, and μp represents the sampling efficiency mean 
from the samples produced by the program. Given the two sets of 
samples with the sample numbers ne and np, we compute the 
statistics, i.e., sample mean eμ , pμ and sample variance se

2, sp
2. 

We can obtain the following statistic 
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Then we can compute the p-value as the probability to obtain the 
statistics in Eqs. (3) and (4) under the assumption that the H0 is 
true, i.e., μe = μp. In our experiments, we use MatlabTM Statistics 
Toolbox to compute this p-value. Similarly, we apply the same 
principle to conduct the two-sample F-test to compare the 
variances of the two samples. 

 Our second experiment analyzes the denoising effects on the 
SFR and sampling efficiency computation. With the observation 

that real images are always contaminated by noise, our purpose 
here is to verify if the denoising operation helps improve the SFR 
and sampling efficiency. We use both synthetic and real samples 
in this experiment, and apply Gaussian noise to the synthetic edge 
image as a simple simulation to real cases. Gaussian filtering is 
used for denoising on the synthetic and real samples, i.e., the 
synthetic edge image with added noise and the detected edge 
regions in real samples. In the denoising filtering, we leave the 
narrow band surrounding the edge untouched in order to preserve 
the original edge features, i.e., we only smooth the regions far 
away from the edge. Thus there are two main parameters in the 
experiment, the denoising degree (strength) and the band size. 

The third extension is to upgrade the user interface. 
Specifically, we construct the interface to allow for user input of 
the constraint parameters. The left figure of Figure 3 shows the 
interface with 14 textboxes for the constraint settings. These 
parameters are divided to two major categories for the edge 
detection and SFR computation constraints, respectively. Once a 
user clicks the “Go!” button, a dialog box pops up for the user to 
localize the configuration file that indicates the path and names of 
the samples. After the complete analysis on the samples, the final 
results are shown at the bottom of the interface window. In 
particular, the “Scanning Resolution” refers to the imaging setting 
when the samples were scanned (as reported in the file header); the 
“Efficiency” is derived by the center limit theorem (see [16] for 
details); the “Content Resolution” indicates the true level of 
information content for the sample set. 

 

  
Figure 3. The user interface for autoSFR. Left: before running; Right: after 
running, the results are shown at the bottom. 

4. Experiments 
In our experiments, we tested our approach on a large set of 

35mm photographic negatives (primarily nitrate-base) from the 
Farm Security Administration (FSA) Collection at the Library of 
Congress. The images were captured on a Stokes Imaging digital 
camera SII75M utilizing a Dalsa FTF5066C CCD array in 4-shot 
mode (approx. 33 MP). The FSA Collection contains documentary 
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photographs produced by U.S. Government photographers during 
the Great Depression and World War II (1936-1945).  

The first experiment is to conduct the hypothesis test to 
compare the results obtained from the manually identified edges 
and those detected by the software. Our  expert identified 100 edge 
regions from a selected set of ten images from the FSA collection. 
From the same set of ten source images, the autoSFR software 
automatically detected a total of 51 edge regions. With Eqs. (2), 
(3), (4), we compare the mean and variance of the sampling 
efficiency of these two sample sets using the two-sample t-test and 
F-test. For generality we use 5% significance level. The computed 
p-values are 0.087 and 0.7644 for the two-sample t-test and F-test 
respectively, which indicates a failure to reject the null hypothesis, 
i.e., the sampling efficiency from the two edge sets have 
statistically the same mean and variance. Therefore, the algorithm 
obtains similar results as the expert, which shows its robustness 
and accuracy.  

In the second experiment, we test the denoising effects on the 
SFR and sampling efficiency computation. Figure 4 shows an 
artificial edge image, and the same image with Gaussian noise of 
different degree, e.g., variance σ2 = 0.1 and 0.2. We apply 
Gaussian smoothing on the whole image except the narrow band  
surrounding the edge. Figure 5 shows the SFR curves 
corresponding to the images in Figure 4. It can be seen that the 
stronger noise introduces larger reduction on sampling efficiency. 
The sampling efficiency values corresponding to the minor and 
strong noise images are 52% and 26%, respectively. This 
observation is also consistent with the results presented in [18]. 
Figure 6 and 7 present the SFR curves after applying Gaussian 
filtering on the minor noise image (the middle image in Figure 4) 
with different parameter settings, i.e., minor and strong denoising 
(see Figure 6); narrow and wide band surrounding the edge (see 
Figure 7). In Figure 6, we can see that denoising improves the 
sampling efficiency values. However, it is difficult to draw the 
formal conclusion from this single example due to the very noisy 
SFR curves even after denoising. Meanwhile, the band size has 
almost no effects on the SFR and efficiency computation, as 
shown in Figure 7.  

To further verify the denoising effects on the computation, we 
repeat the previous two-sample t-test and F-test to compare the 
sampling efficiency before and after the denoising on the same ten 
images in the first experiment. With narrow band (i.e., radius r = 1 
pixel for an edge point) preserved in smoothing, both minor (σ = 
0.5) and strong (σ = 2) filtering produce statistically the same 
results as those without denoising. Only very strong denoising (σ = 
20) change the statistics. Meanwhile, with strong denoising, both 
narrow (r = 1) and wide band (r = 5) settings obtain the same 
results. Over this spatial region, we draw the tentative conclusion 
that both the denoising strength and the band size have 
insignificant effects on the SFR and sampling efficiency.  It is 
likely that stronger de-noising has a greater effect on the precision 
of the SFR estimate than does the band width of the edge window. 
Further investigations to prove this are necessary though. 
  

   
Figure 4. Synthetic edge image. Left: original image; Middle: small noise (σ2 
= 0.1); Right: large noise (σ2 = 0.2). 

 
Figure 5. Sample efficiency values for Figure 4 images. 

 
Figure 6. SFR curves after applying Gaussian smoothing on the middle 
image in Figure 4 with different standard deviation (minor: 0.5; strong: 2) 

 
Figure 7. SFR curves after applying Gaussian smoothing on the middle 
image in Figure 4 with different sizes of band surrounding the edge (narrow: 1 
pixel radius for an edge point; wide: 5 pixels radius for an edge point)  
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5. Conclusion 
We extend our previous work of automated spatial resolution 

determination for digitization. The extension work includes: 
conducting hypothesis test to verify the robustness and accuracy of 
the algorithm, analyzing the denoising effects on the SFR and 
sampling efficiency computation, and constructing a user friendly 
interface for software distribution. Based on these explorations, we 
show that the algorithm is robust and can obtain comparable 
results with manual selection. Denoising generally introduces 
minor changes to the SFR and sampling efficiency computation 
but needs a more thorough investigation to draw strong 
conclusions For future work, we will further investigate the above 
results on more comprehensive collections with larger sample sets. 
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