
Micro-services based distributable workflow for digital archives
Heikki Kurhinen and Mikko Lampi, Mikkeli University of Applied Sciences, Mikkeli, Finland

Abstract
Managing the costs and the workloads in digital preservation

requires automation and supportive tools. Micro-services is a
well-tested and widely adapted architecture, proven in archive
systems [1] and operating systems like Linux and UNIX. The
automation level can be increased by combining the services into
workflows and making the processing distributed. Resource
consuming tasks such as ingest, migration and format conversion
can be streamlined with this kind of approach.

This paper is about the development of a workflow engine
prototype for micro-services based distributed processes in digital
archives. The prototype is demonstrated with a simple use case of
digital content ingest workflow. The design goal was to support
work done in the digital archive developments and to provide a
simple and extendable tool for processing the digital content.

Background
In digital archives, there is a need to process the data in

different phases of its lifecycle. For example, ingesting requires
certain steps to normalize and prepare the data for long-term
preservation and access. There are other requirements for
migration and file fixity processes. Most of the processes are able
to be automated in order to increase the cost-efficiency and
minimize the manual work. Processes can be modeled as actions
and combined into workflows which support decision making and
the results are collected into logs or other audit records. The
workflows can be automated and controlled by a workflow engine.
The engine is usually either an existing software or developed
specifically for the purpose.

There are plenty of existing workflow engines available, both
open source and proprietary. Later in this paper, there is a brief
description of the research on the available tools and reasons for
developing a new engine. In brief, the majority of workflow
engines are complex, multipurpose modeling tools which include a
moderate learning curve and specific modeling languages. As a
result, we found that building a micro-service supporting engine
would also benefit the whole digital archiving community and
other projects requiring an agile workflow solution. It was found
important that the engine is completely open source. More about
the benefits can be found later on this paper.

This development project was carried out as a bachelor thesis
by Heikki Kurhinen in Department of Electrical Engineering and
Information Technology at the Mikkeli University of Applied
Sciences (MAMK) as part of the ongoing Open Source Archive
(OSA) project. OSA is carried out by MAMK and is funded by the
European Regional Development Fund (ERDF). The project
started in the summer of 2012 and will continue until the end of
2014. The goals of the project are to develop a service archive
system and to search for and test a dark archive solution for long-
term preservation. The focus and key values are open source,
sustainable solutions and user centered development. After the

project is completed, the results will be migrated with MAMK’s
digital archive services and the current archive platforms.

Research and evaluation of available tools

Research
From the beginning of the project, it was acknowledged there

was no point in re-inventing existing and suitable products. A
research was conducted to find out current workflow engines and
tools. The requirements were collected and analyzed. The most
important were ease of use, being open source, support for micro-
services, easy integration via a well-documented API, extendibility
and clustering features.

Some of the well-known products evaluated were Apache
Camel, Taverna, jBPM and Activiti. All of the mentioned are good
workflow engines for their designed purpose, but did not exactly
match our needs. They could be used to build the workflow
system, as a framework with some markup languages which are
needed to model the jobs and workflows. More or less, the tools
would also dictate the implementation languages of micro-
services. More about the encountered problems is described below.

Problems
All of the evaluated workflow solutions were of mid to high

complexity and required lots of effort to be efficiently utilized and
deployed even in the development phase. Proprietary engines
could not be modified or contained components which were not
extendable. Even the open source products had much of the
functionality programmed into the core of the engine making them
harder to adapt and integrate into the existing projects. Due to the
reasons described earlier, open source was the preferred solution
and the proprietary engines were ruled out.

There were some promising micro-services based workflows,
such as in Archivematica and Islandora, but they were either
tightly integrated into their respective environment and scope or
the development tools were not optimal considering our available
resources. As an example, Perl or Ruby developers are not that
widely available due to education and academic traditions in
software development. The most other open source tools were
heavy and clearly targeted for large enterprises and complex
software. The configuration of these tools would probably require
more resources than developing a simple and better sustainable
engine. Other common problems encountered with the existing
software included a significant learning curve in form of the
specific modeling languages or methodologies, complexity in the
clustering and integration or required the logging features.
Collecting log data during the execution of micro-services is of
high importance in digital archives. Audit trails and provenance
information has to be reliable and traceable to the point an object
is ingested the first time.

From these results, it was concluded that developing a new
workflow engine was a sustainable solution. Considering the

Archiving 2014 Final Program and Proceedings 47

available resources such as developers, time and budget it was the
most feasible option.

Micro-service architecture
Micro-services as an architecture or a software development

concept is not a new invention. The origin goes back to UNIX
design philosophy and the concept of modular software. There is
no explicit definition what is a micro-service. It can be seen that a
micro-service is an independent program that does only one thing
but it does it very well. The architecture aims to decouple the
services in a way that they can be reused, changed and combined
independently from each other. It can, however, be hard to define,
what the core functionality of a service is. As an example, file
name normalization would be one function that could be
implemented as a micro-service. The implementation can be as
small as just a few lines of code, as name micro suggests. Micro-
services rely on external operations to add features such as
monitoring, clustering, controlling and advanced user interfaces.
The services itself are small, lightweight and independent. They
can be built or wrapped with programming frameworks, and
usually they are called by workflow engines or software systems
rather than the users. The architecture itself was a major driver for
choosing open source licensing for the project deliverables.

Micro-service design philosophy
The UNIX design philosophy defines the following core rules

for micro-services [2]. Each is discussed in more detail below and
it is evaluated how they will benefit the digital archive
development.
1. Each program or service should do its task, and only its task,

while doing it very well.
2. For new features, create new services. Do not create

complexity by adding new features to existing services.
3. Expect the output of each program to become the input for

another program. Even if yet unknown.
4. Design and build software to be tested and used early.
5. Do not hesitate to rebuild or remove clumsy or unusable

services.

 Each program should perform its function very well and have
no other functions. There are two immediate benefits: the amount
of work and other resources is much easier to estimate and manage
if the scope is kept at minimum; and when solving only one
problem at a time, much greater effort can be put on developing a
quality solution.
 If new features are required, it should be a very careful
decision if it should be made a new service or added to an existing
one. When each service is kept small, it is easy to maintain and
keep them up to date with rapidly changing technology. The
quality is better when small amount of features can be put on
maximum effort without danger of breaking the other component.
Lots of bugs in software are generated because of feature overload.

Micro-services are designed to be chained and combined into
more advanced workflows. When the programs’ input and output
are designed to be generic, they can be linked together in any way
required regardless of how the developer designed it. This
principle is especially useful when developing services in
community and sharing them.

Because micro-services are by nature very small programs,
they can be built fast and agile. Any software should be tested
early and improved based on the test results and user feedback.
The micro-service architecture helps splitting the development in
smaller tasks and releasing them often without the need to update
the whole product. It helps to manage risks and schedules.

Due to the previous principles, it is easy to refactor and
improve a micro-service over time. It is highly encouraged to
rebuild or even remove the old services in order to improve the
quality and keep the system up to date. With open source
development, the community can participate in improving the
services and maintaining workflows.

With the above mentioned five basic principles, it can be
concluded that micro-service architecture can improve both the
quality and the features of software systems. It is especially
suitable for industries that have limited funding or form co-
operative communities.

Implementation
The workflow engine was implemented utilizing the above

mentioned design philosophy. It should be mentioned that the
thesis work produced an early prototype which will be further
developed in the OSA project.

Java was chosen as the core technology because it is the most
popular programming language and the developers are easy to
find, which in turn helps to maximize the impact and future use.
There was also good in-house knowledge in MAMK development
team. Java is also independent of the operating system
environment, even though Linux is our preferred environment.

The workflows’ job persistence, scheduling and distribution
were based on Quartz library. It is the de facto software for Java
based scheduling and job management. JSPF library was used to
create a plug-in system for introducing new micro-services to the
workflow engine. The RESTful API was built with Jersey, which
is the JAX-RS reference implementation. It also adds helpful
features to speed up the development. The workflow system
doesn’t require any external services such as web servers. There is
a pre-configured and embedded server called Grizzly integrated
into the software.

The implementation policy was to use existing open source
tools as much as possible. The development focus could be put on
the identified problems instead of redeveloping something already
done. The approach also made it easier to manage time and budget.

Design goals
The design goals were concluded from the problems

identified during the research and evaluation phase. The workflow
engine should be easy to use and deployable with minimum
configurations. The learning curve should be low for new
developers. No specific modeling language should be required. It
should scale well to any size of software environment and
workload. Clustering and distributed computing should be built-in
from the beginning, not as an add-on feature. The engine should be
extendible and modifiable with basic programming knowledge and
it should be able to be integrated with any existing software with
standard a RESTful web interface. Finally, it should be industry
agnostic and suitable for any kind of content.

The results were from the beginning designed to be released
as open source. Because micro-service architecture supports open

48 ©2014 Society for Imaging Science and Technology

source and community driven development, it was crucial to
support running services developed with any language or tools. It
was achieved by designing a lightweight wrapper for local services
and RESTful interface for remote services.

Extensibility
The workflow engine can be contacted, monitored and

managed via a RESTful web service based API. The engine itself
doesn’t require user interface or manual management once started.
It enables complete automation, but also management from any
external software. In the OSA project, it is added to the archivist's
workspace which is a web based portal for archive management
and ingest tools. Also, the engine can be extended with Java by
directly modifying it. The program code is well documented and
commented.

Because Java was our preferred tool, the project created a
small client library to be embedded in any Java based software. It
provides a convenient access to API features. The OSA project
will, once completed, provide a complete use case on how to
exploit the engine. The API was built with Java’s reference REST
implementation which provides the best possible compatibility.

Benefits of open source
In the archiving industry, transparency provides better trust

and independence over the continuously changing software
companies. With limited funding, building the features and
functions together is the only sustainable way. Micro-service
architecture supports this approach very well. As an example, a
software developer programs a new service to be used for a
specific digital archive function. After completion, the service is
released as open source. Any other digital archive can pick it up
and modify it to suit their needs as well. With coordination, the
services could be built based on common dialogue and the
community. It would help reducing the redundancy of
developments and decrease the dependency of commercial
software.

Using open source licensing enforces that the solutions are
available and usable even if the original developer would not be
active at that time. It has been confirmed that open source
improves the code quality due to various reasons such as the
amount of people developing the software. There are more eyes
looking for the bugs, more use cases to consider and more
knowledge to apply. That is, if the community is active and the
project scope matches the ecosystem. [4]

Clustering and distributed processing
Easy clustering and distributed processing were a major

design goal of the workflow engine. It means that creating and
managing a cluster of micro-services should be possible with very
little configuration or extensive knowledge. It is an ambitious goal
and it was clear that it was out of scope for the thesis based
project. The development is continued during the OSA project.

Clustering and scalability
When defining a cluster, the only information needed is an

identifying name for it. The engine then automatically discovers
every node belonging to the named cluster. The engine then

communicates with the found nodes. At this point, it will only
keep track on the health status of the cluster (e.g. if there are
servers offline).

The distribution and load balancing of work and services is
done with Quartz. The cluster has a shared database which is used
to store all the currently allocated jobs. A workflow request can be
sent via the API to any of the nodes, which then stores it into the
database. Any node available for performing the task will pick it
up based on its response speed. If a node is slowed down by the
heavy workload, it is unable to ask for more tasks. The cluster
should automatically balance its performance. However, it is
known that the approach may not be the optimal method for
distributing heterogeneous jobs that can have varying requirements
and payload. However, the current solution works for the scope of
this project and it can be upgraded later. Because of the
architectural choices, it does not affect the other parts of the engine
and should be a good basis for improvements.

Fault tolerance and availability
Since the current version is only a prototype and not intended

to be used in production environment, the maximum availability
was not the top priority during development. There is a framework
for creating actions, for example, if a health check between any
nodes should fail. There could be added automatic actions like
reporting, alerts and backup nodes.

Still, because this workflow engine is completely distributed
and each node is a standalone unit, the failing of a single node
does not bring offline the cluster. New nodes can be created and
started any time and the size and capabilities of the cluster can be
modified runtime. There is no need to pre-define the cluster in a
configuration. The critical task is keeping the job store available.
Because standard database is used, in our case MariaDB, it can be
replicated with its own set of tools and there are no special tools
required.

Future development
In the prototype distributing work is possible only at

workflow level, not yet at micro-service level. Future development
could add parallel processing for heavy micro-services like
checksum calculations or preview generation. Micro-service level
distributed processing would allow calculating the most efficient
nodes for processing and achieve better throughput for high
volume digital archives. Management of the cluster could be
improved by exploiting tools like Apache ZooKeeper and nodes
could be deployed on Apache Hadoop.

Building more sophisticated user interfaces for monitoring the
workflow status and output is prioritized in OSA project. The
development target is something similar to a very well done user
interface in the Archivematica system. Some of the pilot cases
require full automation, so the interface should support either just
to monitor the activity or manage the workflows.

The groundwork is already done in the workflow engine and
design choices have been made to enable future development. The
timeframe in thesis works is limited and some features had to be
prioritized.

Use case: simple ingest workflow
The workflow engine was tested and demonstrated with a

simple, proof of a concept type, ingest workflow. The ingest

Archiving 2014 Final Program and Proceedings 49

process used was for born digital and digitized materials. It is
designed to be further developed in the OSA project and to be pilot
tested during spring and summer 2014. As part of the thesis, the
workflow mas modeled based on input from private archives such
as Central Archives for Finnish Business Records (ELKA) and
some private companies. The simplified model is presented in
figure 1 and 2.

Figure 1. A simplified presentation of the pre-ingest workflow.

Figure 2. A simplified presentation of the ingest workflow.

Next, the workflow was configured for the engine. Basically,

the required steps were to add a very short XML description,
which included an identification, a human readable name and a
description for the workflow. In addition to that, each micro-
service was introduced in order that they would be executed.
Defining the services has a few other parameters describing what
happens in case of failure and if the service would require

additional resources such as a database connection. As seen in
figure 3, the configuration is very simple and straightforward. It is
expected that the developer of a micro-service provided the
information for the required configuration or a premade
configuration fragment. In the sample configuration, a basic
MongoDB document database connection is configured.

Figure 3. Example of the workflow and micro-service configuration.

 For each micro-service the engine requires a small handler, a
wrapper class in technical terms, which enables using services
implemented in any language or tools. They can be locally
installed or accessed remotely via a network or Internet. The
handler manages monitoring and input-output activities of the
service. Adding services and their handlers does not require
modifying the engine itself or restarting it. A sample of a handler
is presented below in figure 4.

Figure 4. Example of a micro-service handler code.

Results
The project was considered successful though still being a

prototype. It has proven that all features specified in the beginning
are achievable and that they were feasible decisions. The resulting
software is used in OSA project pilots during spring and summer
2014. The engine will be released as open source and is used as a
part of the OSA archive platform. Other deliverables are the
handler code samples and the configuration samples for
implementing custom workflows and services and the developer
level documentation.

The thesis report about the work done in the project will be
available at http://theseus.fi/handle/10024/2088 by the end of
spring 2014. The source code and the complete documentation will
be released by the end of the 2014 on GitHub at
https://github.com/Belvain/simple-workflow-engine.

Conclusions
The prototype of the workflow engine and micro-services met

the design goals set at the beginning of the project. For a
production use, more development should be made. It was
discovered that the extendibility and integration readiness were

50 ©2014 Society for Imaging Science and Technology

already at good level. A standard based RESTful API is universal
solution which supports the community driven development and
digital archive systems.

Digital archives are a fine example where micro-services
have proven to be useful [1]. The architecture also contributes to
the risk management, budgeting and other development activities
when building new digital services and tools for archives.

References
[1] Peter Van Garderen, Archivematica: using micro-services and open-

source software to deliver a comprehensive digital curation solution
(Artefactual Systems, New Westminster, Canada, 2010)
http://www.ifs.tuwien.ac.at/dp/ipres2010%29/papers/vanGarderen28.
pdf.

[2] Stephen Abrams, Patricia Hswe, Delphine Khanna, Katherine Kott,
Micro-Services “It’s a Series of Tubes”. http://www.diglib.org/wp-
content/uploads/2011/01/06micro-services.pdf

[3] James Hughes, Micro Service Architecture
http://yobriefca.se/blog/2013/04/29/micro-service-architecture/

[4] Coverity Scan: 2012 Open Source Report (Coverity Inc, 2012)
http://wpcme.coverity.com/wp-content/uploads/2012-Coverity-Scan-
Report.pdf

[5] Kirsta Stapelfeldt, Islandora documentation
https://wiki.duraspace.org/display/ISLANDORA712/Islandora

[6] Diomidis Spinellis, Code Quality: The Open Source Perspective.
(Addison Wesley, 2006.)

Author Biography
Heikki Kurhinen is a software developer at Otavan Opisto. Heikki is

currently studying his 4th year for BEng in information technology at
Mikkeli University of Applied Sciences. He is interested in programming
and all kinds of software development.

Mikko Lampi is the project lead for Open Source Archive at Mikkeli
University of Applied Sciences. He has a BEng in information technology.
Mikko is interested in open source, agile development and involving the
community and users with the software development and digital archives.

Archiving 2014 Final Program and Proceedings 51

