
Decentralized Hosting And Preservation Of Open Data
Samuel Goebert (1,2), Bettina Harriehausen-Mühlbauer (1), Christoph Wentzel (1), Steven Furnell (2) ; (1) University of Applied
Sciences Darmstadt (Germany), (2) Plymouth University (UK)

Abstract
Open Data Initiatives are hosted in a centralized way de-

spite their encouragement of sharing. Synchronizing the data in
a multi master database replication setup enables user contribu-
tions from multiple sources. This paper details a proof of concept
implementation of a peer-to-peer protocol that enables a decen-
tralized archiving network which does not need a central synchro-
nization database. The protocol provides auditable, tamperproof
multi master database replication via a distributed log file. This
provides a permanent and formalized way to access the data. All
participants can edit their locally and changes are synchronized
with the network.

Introduction
The Internet is changing from a web of documents to a

web of data. Open data initiatives like Wikipedia, Internet
Archive, Stack Exchange or OpenStreetMap have become impor-
tant sources of global knowledge. While mainly built by volun-
teers the quality of the data has reached and in some cases ex-
ceeded proprietary offerings. Although open data is freely avail-
able and everybody is invited to contribute, update operations
have to happen on the main database or will be ignored. The data
is locked in a centralized architecture.

Current efforts to archive open data is based on mirroring
offside copies of the main database [9]. This prevents the raw
data binary stream from getting lost but the data in the archives is
disconnected. The copies must be updated in regular intervals to
reflect the state of the main database. Direct editing of a mirror is
possible but creates a fork as update operations are not synchro-
nized back to the main project. With many forks of the same data
it becomes difficult to determine the leading fork that should be
preserved and contributed to.

This paper discusses a novel approach to preservation and
synchronization of open data which does not require a single point
of truth. Every participant hosts a complete version of a decen-
tralized transaction log. The transaction log is replicated and
synchronized in a peer-to-peer network and contains the history
of update operations from every node. The participants together
form the main database.

This paper gives the syntax and semantics of a proof of con-
cept implementation of a peer-to-peer protocol that enables de-
centralized archiving networks. Its features are:

• no single point of truth needed
• auditable and temper proof data storage
• easy to join an existing network via a meta data file
• provides a permanent infrastructure to access the data as

long as one machine remains in the network
• mirrors can edit local data and changes are synchronized

with the network

Concept
To preserve a website it might be sufficient to store snapshots

of a page if the web page follows the document model of visual-
ization. The approach might not work as well for data drive appli-
cations where visualization is dependent on the state of the inter-
action. A blog type website displays the same content for a given
URL, while a search engine displays different results depending
on the search terms. To preserve this type of dynamic websites,
an approach would be to preserve the data behind the search en-
gine and recreate the presentation layer by creating a website that
uses the data as source. Open data initiatives are willingly giving
access to the structured data behind their web application.

The structured data is the culmination of the history of
changes to the data set. A snapshot of only the current state of the
database might be sufficient for a mirror who wants to display the
latest changes only but for preserving the data valuable informa-
tion is sacrificed in the long term. A distributed network archive
is a data structure with no single point of truth that focuses on
storing the history of the structured data. Due to the temper proof
nature of the protocol it is possible to store a copy of the history
from any participant in the network. The distributed nature of the
protocol makes it possible to also contribute to the history from
any participant in the network moving the current data set from a
single machine into a network.

The difference from a distributed archiving network to exist-
ing synchronization approaches is the data structure used to hold
and distribute the history. An archiving network is synchronized
using a temper proof, cryptographically linked chain of blocks.
A block groups single change operations to a local database to-
gether. To form a time line, the blocks are linked by hash values.
To seal a block, a cryptographic puzzle has to be solved and the
solution is signed with cryptographic keys. Every node is able
to verify a sealed block by validating the hash chain and the cor-
responding puzzles. If the sealed block satisfies the validation
criteria the log is advanced, broadcasted to the other participants
and used as the base for the next puzzle.

Decentralized hosting is truly democratic since there is no
single point of authority that decides the validation rules for a
block or update operation. The rules are decided by the majority
of members, not the host of the main database. The entry barrier
for contributing data is lowered as infrastructure and contributors
are separated. Fluctuation of members does not have an impact
on availability, accessibility of the data or the corresponding in-
frastructure since all machines are connected but can advance in-
dependently from each other.

By providing a standardized way of access to open data,
archives are able to become a connected part of the hosting infras-
tructure instead of stale backups of the main database. By con-
tributing to a decentralized data set, participants prevent knowl-
edge islands. The global data set is improved, instead of only one

264 © Copyright 2013; Society for Imaging Science and Technology

of many forks. Reviving an abandoned project becomes effortless
since the infrastructure is still in place as long as one machine in
the network holds the history.

An archive network can be seen as an extension to the 3-tier
web architecture, acting independently from the web application.
This 4th-tier is responsible for handling the communication with
the network, creating blocks and validating blocks or transactions.
The web application pushes data into the 4th-tier which becomes
part of the network knowledge and data must be pulled from the
network and imported back into the web application, to become
part of the local knowledge. This approach makes it possible to
decide if local data should be overwritten or not with data from
the network.

The creation of new network results in two artifacts: The
genesis block which is the root node of the block chain and a
meta data file, with all information to distinguish the network
from other networks. The genesis blocks is a special block since it
does not have a precedent block and no transaction. All validation
must start from this block hence the hash to identify this block is
very important and should be well known in the network to make
sure everybody validates from the same base. Similar to bittorrent
[7] the meta data file contains information about how to identify
a network. For example the root block hash, tracker links where
peers might be found, a title of the network and a description of
the network.

Bittorrent uses a special purposed software, so called tracker
software, to collect information about machines like the IP ad-
dress and a port who want to participate in a torrent. Machines
that want to join a torrent ask the tracker if it has other machines or
peers that are running the same torrent. If this is the case informa-
tion is send back and the machine is able to contact the network.
The archive network protocol piggybacks on this mechanism and
thus uses an existing infrastructure to connect machines with each
other. It let others find and join a network via a bittorrent tracker
found in the meta data file.

When a machine receives information about other peers from
the tracker, it downloads all the blocks these machines have
stored. It then starts to validate if the genesis block is the same
as in the meta data file. Subsequent all blocks are validated and
if this succeeds all transactions in these blocks are validated. By
validating all blocks from the root block them self the application
can be sure that it has the same block chain as all other machines.
When a machine creates a new block it distributes them to their
peer which validates the block. Following a successful validation
the block is passed on until all machines have the new block in
their chain.

Protocol Format
This section details the primitive data types that are neces-

sary for the protocol. While all examples use the XML format,
other data representations like JSON, bencode or binary formats
are possible. The choice of data format must be decided by the
creator of the network. The corresponding software must simply
be able to read and write the data format.

Change Set
A change set is a single transformation of the applications

database wrapped into a predefined form. The format depends
on the data that needs to be exchanged with other machines to

recreate the database. For example, a network is created to let
machines share their search index for books. If a book is added
to the local database, the corresponding change set would contain
the information that it was an addition and the fields that have
been added to the database. For book modification the format
would consist of the primary key identifying the book and the
fields that have changed. A book that was deleted would simply
be identified by the primary key. The primary key is generated in
the form of a Universally Unique Identifier (UUID) to ensure it is
unique.

Listing 1. Change set format in XML

1 <change−s e t>
2 <a d d i t i o n>
3 <book>
4 <uuid>550 e8400−e29b . . .< / uu id>
5 <a u t h o r>Goehte< / a u t h o r>
6 < t i t l e>F a u s t< / t i t l e>
7 < / book>
8 < / a d d i t i o n>
9 < / change−s e t>

With these three operations we are able to write a log file that
when replayed, results in the current state of the local database.
The fields that a change set must have are predefined by the cre-
ator of the network. Syntax validation is applied to make sure that
a change set is in the format the creator of the network intended it
to be. Validation rules might include the length, the content, the
uniqueness or regular expressions. The change set must obey the
format. A machine that receives a change set that is not in the
correct format, should drop it and the encapsulating block.

Transaction
A transaction is a container type that holds a change set. It

has additional data information about who created the change set,
and when as well as a hash of the content. To make a change
temper proof the hash is build from the data of the change set and
the date when the set was created. By rehashing the change set
data and the date, it is possible for other machines to validate that
the content has not been changed.

Listing 2. Transaction format in XML

1 < t r a n s a c t i o n>
2 <hash>709813209487< / hash>
3 <c r e a t e d −a t>
4 2013−05−30 T09:30:10Z
5 < / c r e a t e d −a t>
6 <change−s e t>
7 . . .
8 < / change−s e t>
9 < / t r a n s a c t i o n>

Block
A block is a container type holding transactions. Addition-

ally to the transactions, a block contains the following data:

• Hash of the previous block
• Hash for this block
• Date when mining was started
• Creation date of this block

Archiving 2013 Final Program and Proceedings 265

• Difficulty for the cryptographic puzzle
• Offset (nonce) for the cryptographic puzzle
• A date when the correct nonce was found
• A hash build by the hashes of all transactions in this block

in lexicographic order
• The public key of the machine

Listing 3. Block format in XML

1 <b l o c k>
2 <p r e v i o u s −hash>
3 0 0 2 3 9 8 7 . . .
4 < / p r e v i o u s −hash>
5 <hash>0002390 d . . .< / hash>
6 < t r a n s a c t i o n s −hash>
7 3 2 4 6 2 3 4 . . .
8 < / t r a n s a c t i o n s −hash>
9 <s t a r t e d −mining−a t>

10 2013−05−30 T09:30:10Z
11 < / s t a r t e d −mining−a t>
12 <d i f f i c u l t y>4< / d i f f i c u l t y>
13 <nonce>439< / nonce>
14 <found−nonce−a t>
15 2013−05−30 T09:45:47Z
16 < / found−nonce−a t>
17 < t r a n s a c t i o n s>
18 < t r a n s a c t i o n>
19 . . .
20 < / t r a n s a c t i o n>
21 < t r a n s a c t i o n>
22 . . .
23 < / t r a n s a c t i o n>
24 < / t r a n s a c t i o n s>
25 < / b l o c k>

To seal a block with all transactions a cryptographic puzzle
must be solved. To solve the puzzle, the hash of the block must
begin with zeros. How many numbers must be zero is determined
by the difficulty level. If the level is four, the first four numbers
have to be zero. The values for a block a static. To generate a
different input for the hashing function the nonce value is changed
with random characters until the puzzle is solved.

The difficulty must not be a fixed value. A formula contain-
ing the average time between the last 10 blocks might suite better
if many machines take part in the network. The value or the for-
mula to get the difficulty is decided by the creator of the network.

The root hash of the transactions is build by hashing all
hashes of the transactions in lexicographic order. This saves up
valuable time while solving the puzzle since only one hash has to
be taken into consideration instead of all transaction hashes for
every pass.

The hash for a block is build by hashing the values of the
previous hash, the root hash for the transactions, date of beginning
of puzzle solving, the difficulty and the nonce together. If the
hash does not solve the cryptographic puzzle, the nonce value is
changed. This creates a new hash that might solve the puzzle.
This is done in a loop until the puzzle is solved.

To provide information who created the block, it is digitally
signed using asymmetric keys. The block is signed with a private
key of the user. The public key is used to verify the signature. If

a system like PGP is used, additional information about the user
can be stored while creating the keys. PGP maintains a public
infrastructure storing public keys. Those can be retrieved from
the service and validate that the transaction could only be signed
by someone who owns the private key. This makes it possible
to identify the source of a transaction. As a backup method the
public key should be stored with every block to prevent that a
public service for the keys vanishes and hurts the auditability this
way.

Block Chain
The block chain is not an element in itself but is build by

the blocks and their connection with each other. The block chain
is a tree structure with a single root branch, the genesis block.
The number of nodes that a tree can posses is not fixed. Blocks
can come from all machines in a network and the tree structure
accommodates for this by supporting branches.

To seal a new block, the machine takes the previous block
with the greatest depth in the tree as a basis for the new block. If
the final node has two blocks the application should start with the
older block. When a new block is received from the network and
the depth is greater than the current one the application is work-
ing on, it should stop and take the new block as the predecessor.
Orphaned blocks, blocks received from the network which have
no previous block that is in the chain yet, are stored separately as
the missing block might arrive later.

The block chain can be validated by following the hashes
and signatures in the chain. This might take some time depending
on the number of blocks.

To accommodate for orphaned or split branches only the
mainline branch should be applied to the application database.
The mainline branch is the chain of blocks with the highest depth
in the tree minus a predefined number of blocks from the top.
As it is not clear when a new block arrives and if it belongs to
the mainline, transaction should only be applied to the database
if there are blocks in front of them. The buffer of blocks makes
sure that no other branch overtakes the lead and changes have to
be reverted on the database. Transactions that reside in a block
that has been determined as orphaned have to be reschedule for
integration into a new block.

Listing 4. Block chain format in XML

1 <b l o c k s>
2 <b l o c k>
3 . . .
4 < / b l o c k>
5 <b l o c k>
6 . . .
7 < / b l o c k>
8 < / b l o c k s>

Meta Data File
The meta data file is the key to finding peers in a network.

Based on the idea of the torrent file from bittorrent, the meta data
file contains all information that is necessary to join a network.
It is also syntax compatible with the bittorrent meta file, to reuse
the existing infrastructure. The file consists of the following fields
and is encoded in the bencode format:

266 © Copyright 2013; Society for Imaging Science and Technology

• tracker links
• the info hash for the network
• the hash for the genesis block
• a name for the network

With this file it is possible to initialize the network applica-
tion and connect with other peers in the network.

The hash for the network is the key to identify the network. It
is compatible to the info hash value from bittorrent which allows
us to use the existing infrastructure in form of bittorrent trackers
to bootstrap a new machine with peer information.

The hash for the network is build by hashing the values of
the the genesis block hash and the name of the network. Since
trackers are subject to change during the lifetime of a network,
the remaining fields do not. Also the validation rules are subject
to change and should not be tight to the meta data file.

Network
This section details the network part of the protocol. How

finds a machine other machines and how should it behave to
achieve the storage behavior.

Web Application Extension
The application that deals with the archive network, can be

seen as an extension to the existing web architecture. By using
an update mechanism like, e.g., a trigger in a database, a trans-
action is build according to the syntax rules of the network. The
transaction is then distributed among the other machines. These
machines apply the change to their local databases when the block
is valid and in the mainline. It is possible to convert initiatives that
do now want to support a network archive directly by using other
data representations of the history as input. A mechanism that
converts the RSS feed into blocks for example could be used to
fill the network as long as all relevant data is in the RSS feed.
There is no full synchronization between all machines here since
RSS is a read only format.

Discovery
A network is distributed by nature. The block chain can be

used on a single machine but the true value of exchanging the
blocks arises when other machines join a network. When a ma-
chine wants to join a new network, it asks a tracker from the meta
data file if it posseses information about other peers. The network
is identified on the tracker via the hash of the network. The tracker
keeps records of which IP address asked for information about the
network and relays any other machine that has asked before.

The network application then tries to contact the machines
returned from the tracker. If one or more machines are found the
block chain is reconstructed by downloading all blocks that exist
in the network and validate them. When all blocks are validated
the node is a full member of the network.

Tracker
A tracker is HTTP web server that connects peers interested

in a special network. The purpose and syntax is identical to the
bittorrent specification. Via a HTTP GET request the client an-
nounces that it is interested in finding peers from the identifying
network. The trackers saves information about the client like

• IP address

• Port
• How many blocks have been downloaded so far
• Info Hash
• Event

The tracker response is a bencode dictionary.
To have an up-to-date representation who is a member of

which network, the client should advertise itself every 30 minutes
and when a new block is deemed valid. This makes sure that a
new machine finds fresh peers quickly in new network.

Network Behavior
To form the peer-to-peer network that underlies the archiv-

ing network, all machines have to react on events. Since a client
might leave a network at any time, important information like
other peers and the block chain is spread to all machines as soon
as they join a network.

node up event
The node up event is a basic building element. When this

routine is called the machine should announce itself to all trackers
that are in the meta data file or have been collected by other peers.
This makes sure the trackers have up-to-date information about
all peers in the network.

Other peers should be asked if they might have new blocks
that was missed. This is done by asking for a short list of all
blocks a client posseses. This block list is checked against the
local block chain and missing blocks are requested as necessary
from the peers.

This routine should be executed every time the machine ex-
periences network downtime. This ensures that the machine has
the latest block chain elements.

node up timer event
This is a regular interval event at which the node up routine

should be called. Depending on the number of updates in a net-
work, this routine might be called from every hour to once a day.

tracker timer event
This routine should be called every 30 minutes to announce

to the tracker that this machine is still alive.

boot up event
When the application is started, it checks the local block

chain and all transactions for validity and thus uses second ap-
proach to recovery from a crash detailed by A. P. Sistla et al. [10].
Then the node up event should be run to ensure that no blocks
have been missed since the last boot.

receive block event
When a block is received the block itself and all transactions

in it are validated. When a block is valid, it is rebroadcasted to all
known peers. This kind of flooding algorithm makes sure that ev-
ery machine in the network receives a newly found block as soon
as possible. If something is wrong with the block, it is dropped
and not rebroadcasted to avoid further distribution of the block.

Archiving 2013 Final Program and Proceedings 267

asked for block event
The client simply returns the block it was asked for identified

by the hash.

asked for block chain event
The client returns the short list of all blocks the client poss-

eses.

Limitations
The protocol using the block chain algorithm at its heart has

some limitations that we want to discuss in this chapter.

Real-Time-Updates
Due to the asynchronous nature of allowing contibutions

from every machine, the block chain is not a real time data struc-
ture. It takes time for a block to travel throughout the network.
The data structure is eventual consistent, meaning that at some
point in time the whole network converges with the same state
of the database. The time it takes to achieve this point is deter-
mined by many factors including the network latency, number of
machines in the archive network and available bandwidth.

For data that is expected to change very infrequently the lim-
itation of slow updates is not a problem. Most static data does
not have the requirements to be available at another machine for
quite some time. Since an archiving network is build for sharing
longterm data, it might be sufficient when the block chain is up-
dated only once a day, to pack as many transactions in a block as
possible.

This makes it possible to push the CPU consuming task of
solving the puzzle in a time slot where the application would be
idle otherwise, like midnight.

Truncation Attack
As described in [13], the block chain as a log file, is vulnera-

ble to a truncation or tail cut attack. In this attack the last n blocks
are omitted when a client asks for the complete block chain.

Since a malicious attacker would need to control all clients
surrounding a victim, the attack has only a small possibility of
success in a large network. As long as one clients relays all blocks
the attack would be mitigated.

The Sybil Attack
Like all distributed systems the network archives are sub-

ject to the Sybil attack described by John R. Douceur [6]. In a
system with an open account creation mechanism like generat-
ing PGP keys nothing prevents a user to generate a new pair of
keys for every transaction and thus gain new identities with every
key pair. Depending on the mode the application is running this
might become a problem when contributions from all machines
are allowed. A malicious user could not get banned by trying to
identify him through their key, since he could change the keys for
every block.

Block flooding
A malicious user is able to generate fake blocks [11] and oc-

cupy CPU time on a machine, since all incoming blocks need to
be validated. To prevent this attack, misbehavior of peers regard-
ing bandwidth consumption could be taken into account which
might result in dropping the peer.

Related work
The block chain algorithm in combination with a crypto-

graphic puzzle was detailed in [12] to provide a distributed ledger
for currency transactions. The block chain variant used in this pa-
per is a simplified version that drops the mini programming lan-
guage that allows complicated transactions in the block chain.

The bootstrap mechanisms from bittorrent are reused. There
is an already working infrastructure with these tools that we can
repurpose to bootstrap a network. A meta data file as configura-
tion initialization file for a network can easily be send via email
or placed on regular bittorent index sites as the file format is com-
patible with each other.

Distributing the history of a web application was also re-
searched by several other teams [1, 2, 3, 4, 5]. Their main focus
was to distribute a wiki. Since the type of application was known
before hand, it was possible for them to include fine grained con-
flict resolution mechanisms. A network archive simply applies all
transactions from a mainline block, regardless of the semantical
meaning a change might have for an application. Since the block
chain is the agreed time line of events, conflicts are overwritten
by the latest change set in the block chain.

Conclusion
In this paper we detailed a peer-to-peer protocol that enables

decentralized archiving networks without the need for a central
synchronization database. Every participant hosts a complete ver-
sion of a decentralized transaction log. The transaction log is
replicated and synchronized in a peer-to-peer network and con-
tains the history of update operations from every node. The par-
ticipants together form the main database.

The difference from a distributed archiving network to exist-
ing synchronization approaches is the data structure used to hold
and distribute the history. An archiving network is synchronized
using a temper proof, cryptographically linked chain of blocks.
A block groups single change operations to a local database to-
gether. To form a time line, the blocks are linked by hash values.
To seal a block, a cryptographic puzzle has to be solved and the
solution is signed with cryptographic keys.

To further enhance the resilience of archive networks it could
follow the footsteps of bittorrent and decentralize the bootstrap-
ping of peers by using a distributed hash table (DHT) implementa-
tion for peer finding like kademila [8]. kademila is a peer-to-peer
system to find peers that are interested in the same info hash. This
would eliminate the need for trackers in the meta data file.

To eliminate the need for having the meta data file to join
a network an instead rely on a link, magnet link can be used. A
magnet link points again to a DHT like peer-to-peer network that
provides the corresponding meta data file. The file is identified
by the info hash and the meta data file itself is downloaded first
from the kademila network and then the machine is also able to
join the archive network. Only the magnet link is needed to join a
network instead of the meta data file itself.

Multi master database replication with a distributed log file,
does not ease the tasks of preservation in itself but makes the data
much more accessible than a download. The access to the data be-
comes structured and formalized and the infrastructure is opened
to the public. Everyone is able to download a copy of the data and
actively contribute storage and bandwidth to keep the initiative
alive.

268 © Copyright 2013; Society for Imaging Science and Technology

References
[1] Sebastian Schaffert, IkeWiki: A Semantic Wiki for Collaborative

Knowledge Management, In 1st International Workshop on Semantic
Technologies in Collaborative Applications (STICA’06), 2006

[2] Guido Urdaneta et all., A Decentralized Wiki Engine For Collabora-
tive Wikipedia Hosting, (2012).

[3] Weiss, S. and Urso, P. and Molli, P., Logoot: A Scalable Optimistic
Replication Algorithm for Collaborative Editing on P2P Networks,
Distributed Computing Systems, 2009. ICDCS ’09. 29th IEEE Inter-
national Conference on, pg. 404 -412 (1998).

[4] Charbel Rahhal and Hala Skaf-molli and Pascal Molli, SWOOKI:
A Peer-to-peer Semantic Wiki, UbiMob ’09 Proceedings of the 5th
French-Speaking Conference on Mobility and Ubiquity Computing,
pg. 91-94 (2009).

[5] Gerald Oster, Pascal Molli, Sergiu Dumitriu, Rubn Mondjar, Uni-
Wiki: A Reliable and Scalable Peer-to-Peer System for Distributing
Wiki Applications, COO - INRIA Lorraine - LORIA , Department of
Computer Science and Mathematics - URV, pg. 18. (2009).

[6] John R. Douceur, The Sybil Attack, IPTPS ’01 Revised Papers from
the First International Workshop on Peer-to-Peer Systems, pg. 251-
260 (2001).

[7] Bram Cohen, Incentives Build Robustness in BitTorrent, (2003).
[8] Petar Maymounkov , David Mazires, Kademlia: A Peer-to-peer In-

formation System Based on the XOR Metric (2002).
[9] Bernhard Haslhofer et al., ResourceSync Framework Specification -

Alpha Draft (2012).
[10] Sistla, A. P. and Welch, J. L., Efficient distributed recovery using

message logging, pg. 223-238 (2012).
[11] Byung-Gon Chun, Mechanisms to Tolerate Misbehavior in Repli-

cated Systems, Technical Report No. UCBEECS-2007-103 (2007).
[12] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System,

(2009).
[13] Ma, Di and Tsudik, Gene, A new approach to secure logging, Trans.

Storage (2009).

Author Biography
Samuel Goebert is a computer science Ph.D. student at the Ply-

mouth University (UK) and the University of Applied Sciences Darmstadt,
Germany. Goebert has over ten years of experience in software develop-
ment and associated technologies. He currently researches peer-to-peer
methodologies to improve preservation of digital cultural heritage.

Archiving 2013 Final Program and Proceedings 269

	100
	14
	41
	27
	65
	47
	12
	54
	29
	45
	52
	46
	6
	20
	22
	24
	28
	35
	70
	71
	2
	30
	32
	67
	43
	58
	16
	53
	10
	11
	13
	19
	44
	56
	60
	61
	23
	49
	7
	51
	15
	9
	40
	33
	101
	26
	68
	3
	50
	63
	42
	62
	64
	38
	36
	8
	66
	25

