An open source infrastructure for quality assurance and preser-
vation of a large digital book collection

Sven Schlarb; Austrian National Library; Vienna, Austria

Abstract

This article presents an open source infrastructure for pro-
cessing large collections of digital books available at the Aus-
trian National Library with a special focus on quality assurance
tasks in the context of the European project SCAPE (www.scape-
project-eu). It describes the cluster hardware and the software
components used for building the experimental IT infrastructure.

More concretely, a set of best practices for the data analy-
sis of large document image collections on the basis of Apache
Hadoop will be shown. Different types of Hadoop jobs (Hadoop-
Streaming-API, Hadoop MapReduce, and Hive) are used as basic
components, and the Taverna workflow description language and
execution engine (www.taverna.org.uk) is used for orchestrating
complex data processing tasks.

Introduction

Today’s libraries are curating large digital collections, index-
ing millions of full-text documents, and preserving terabytes of
data for future generations. This means that libraries must adopt
new methods for processing large amounts of data. And this is ex-
actly where the European project SCAPE (www.scape-project.eu)
comes into play. The project has a focus on long-term preserva-
tion and is creating an open source infrastructure together with a
variety of tools and services designed for the distributed process-
ing of large data sets. The purpose of this infrastructure is to be
able to perform quality assurance tasks, like analysing cropping
errors with possible text loss, for example, as part of managing
large digital book collections.

The article gives an overview on the experimental set-
up at the Austrian National Library including hardware and
open source software components. Furthermore, it describes
experiences and provides best practices for the data analysis
of large document image collections on the basis of Apache
Hadoop (http://hadoop.apache.org). Different types of Hadoop
jobs (Hadoop-Streaming-API, Hadoop MapReduce, and Hive -
http://hive.apache.org) are used as basic components, and the
Taverna workflow description language and execution engine
(www.taverna.org.uk) is used for orchestrating complex data pro-
cessing tasks.

Experimental environment

A dedicated test environment was created in physical prox-
imity to the Austrian National Library’s digital book repository in
order to be able to run different types of large scale data process-
ing scenarios on real institutional data sets. In the following, the
hardware and software environment will be described.

234

Cluster software

The SCAPE Preservation Platform provides an extensible
infrastructure based on Apache Hadoop together with a set of
preservation components containing migration, characterisation
and quality assurance components that can be used for creating
composite preservation workflows.

Ubuntu server 10.04 is used as the operating system of all
cluster nodes and Java (version 6 update 33) is required for most
of the SCAPE platform, tools, and services.

Hadoop [2] is an essential component of the SCAPE plat-
form and provides an implementation for MapReduce [3]. It
is a programming model for the distributed processing of large
datasets. The Cloudera CDH3 Update 5 (CDH3u5) distribu-
tion has been used to make Apache Hadoop available in version
0.20.2. Additionally, a MySQL database is used as Hive Metas-
tore. The Taverna workflow description language [1] and execu-
tion engine (www.taverna.org.uk) is used for orchestrating com-
plex data processing tasks.

Cluster hardware

The computing and distributed storage cluster consists of one
master node controlling five worker nodes, as shown in figure 1.
The master node is a server with two 2.4 GHz Quadcore CPUs
(16 HyperThreading cores), 24 gigabyte RAM, and three one ter-
abyte disks configured as RAIDS5. The worker nodes are servers
with one 2.53 GHz Quadcore CPU (8 HyperThreading cores), 16
gigabyte RAM, and two one terabyte disks configured as RAIDO
(no disk system level redundancy).

The master node runs only the Hadoop Job Tracker daemon,
which distributes MapReduce tasks to the task trackers, and the
Hadoop Name Node daemon, which manages the Hadoop Dis-
tributed Filesystem (HDES).

Task trackers

-
Hii- )
TR |
[T
| F - |Uﬂ]'

HDFS Data nodes

(g}

Job tracker

)

M

O ||_|I|]

Name node

”

Figure 1: Experimental cluster: One controller and five worker
nodes.

© Copyright 2013; Society for Imaging Science and Technology



Each worker node server has 4 physical cores. With hyper-
threading technology 8 logical cores are available. In the selected
configuration, 5 logical cores are assigned to Map tasks, 2 cores
to Reduce tasks, and 1 core is reserved for the operating system.
Basically, this means that a total of 25 Map tasks and 10 Reduce
tasks can run in parallel.

Regarding the overall storage capacity, in this configuration
only worker node hard disks are configured to be part of the
Hadoop Distributed Filesystem (HDFS). 1.74 terabytes of each
worker node are assigned to HDFS, and the rest is reserved to the
operating system. This leads to a total physical storage space of
around 8.7 terabytes. The cluster is configured with redundancy
factor 2 which means that each data block is located at least on
two different machines. Therefore, half of the physical storage
space, around 4.35 terabytes, is available in the HDFS.

Book page layout analysis

One scenario that will be discussed in detail here is about
parsing a large collection of HTML book page layout and text
content files (>25 million pages) in order to extract structured
information that can be used to identify possible quality issues.

The HTML files — more precisely, hOCR [4] files — are part
of a book collection where each HTML page represents layout
and text of a corresponding book page image. These HTML
files have block level elements described by properties of a *div’
HTML tag. Each °div’ element has a “position”, “width” and
“height” property representing the surrounding rectangle of a text
or image block.

Assuming a typical book page layout, the identified text
block width (multiple columns summing up to one text block)
plus the white margins should approximately match the book page
image width. Based on this assumption, the central hypothesis is
that if there is a significant mismatch for several pages of the same
book, it can be interpreted as an indicator for possible cropping
errors with text loss.

However, the main concern of this article is not to verity the
validity of this hypothesis but to show the principle of approach-
ing this kind of data processing scenario by means of the MapRe-
duce programming model.

In this sense, the scenario presented here presents the parallel
execution of HTML parsing and the subsequent average text block
width per page calculation using MapReduce.

Before this MapReduce job can be applied, it is necessary to
prepare the data which will be described in the following section.

Data preparation

First of all, dealing with lots of HTML files means that we
are facing Hadoop’s ”Small Files Problem” [5]. In brief, this is
to say that the files we want to process are too small for choosing
them directly as input for a MapReduce job.

As a matter of fact, loading 1000 separated HTML files into
HDFS would already take a considerable amount of time. What is
worse, however, if these 1000 HTML files were used as input the
Hadoop JobTracker would create 1000 Map tasks because at least
one Map task is created per input file. Given the task creation
overhead this would result in a bad processing performance. In
short, Hadoop does not like small files but, on the contrary, the
larger the better.

One approach to overcome this shortcoming is to create one

Archiving 2013 Final Program and Proceedings

large file, a so called SequenceFile, that holds key-value pairs.
Related to the scenario described above the key is a book page
identifier and the value is the content of the ’small file”, here the
HTML plain text content. The SequenceFile is used for sequen-
tial processing of the key-value pairs, since random access is not
intended. The sequence file is created by reading the HTML files
in parallel from network attached storage. Just to give a rough
impression, depending on file server and network load, aggregat-
ing 25 million pages and loading it as a single SequenceFile into
HDEFS took up to 24 hours in the experimental environment de-
scribed in this article (see section "Experimental environment”).

Further down in this article it will be made clear how this
relates to the processing time of MapRecuce jobs. At this point
it’s just worth noting that the purpose of this data preparation is
a ”write-once, read-many-times pattern” [6] where data is kept in
HDFS in order to perform different types of analysis and infor-
mation extraction tasks.

Given the limited storage capacity of the experimental clus-
ter, it is not possible to make the complete digital books data set
available in the cluster, especially the image data remains on net-
work attached storage.

Data flow modelling

Depending on expected output and requirements, complex
data processing patterns are usually not performed by a single
MapReduce job, but they are combined in a processing pipeline
executing a sequence of jobs. For orchestrating complex data pro-
cessing tasks, the Taverna workflow description language and exe-
cution engine (www.taverna.org.uk) is used in the SCAPE project.

The diagram in Figure 2 shows a graphical representation
of a Taverna workflow. On the top of the diagram are the so
called input ports which are variables that get string values
(e.g. by user input) when starting a workflow run. Arrows
indicate the data flow from one element to the subsequent
one. The element on the bottom of the diagram is the output
port which is the final outcome of the workflow run. The
components in the middle of the diagram are “tool service”
(http://dev.mygrid.org.uk/wiki/display/taverna/Tool+service)
components which start Hadoop jobs in bash scripts and re-
turn the standard output of these processes to the subsequent
component.

The HadoopSequenceFileCreator Taverna component in
Figure 2 is basically a Map function reading HTML files directly
from the file server, and storing a book page identifier as 'key’
and the content as BytesWritable *value’ (key-value-pair).

Figure 3 illustrates the process of creating a plain text input
file containing all file paths and then assembling the content into
one SequenceFile.

The network attached storage is mounted on each worker
node at the same mount point, i.e. each processing node of
the cluster has access to the files on the file server. Given that
each worker node executes several tasks simultaneously using the
available CPU cores, the SequenceFile is created in a parallel
manner, limited basically by the bandwidth of the internal net-
work (SequenceFile creation is mostly I/0O bound).

The SequenceFile is then split into 64 megabytes splits (de-
fault configuration) so that the TaskTracker parses a bundle of
HTML files in each task. The runtime of a task in a Hadoop job
is an important factor for the overall performance. On the one

235



hand, choosing a smaller split size can have the effect of creat-
ing many tasks with short runtime so that the task creation over-
head has a negative impact on the overall performance. On the
other hand, a bigger split size with fewer tasks can have the ef-
fect of creating tasks with long runtime where, at the end of the
Hadoop job, a few tasks are still running while the remaining pro-
cessing cores lie idle. Cluster monitoring services, like Ganglia
(http://ganglia.sourceforge.net), can help to optimize the use of
cluster resources [7].

Once data is loaded into HDEFS, the
SequenceFileInputFormat can be used as input in the sub-
sequent MapReduce job which parses the HTML files using the
Java HTML parser Jsoup (http://jsoup.org) in the Map function
and calculates the average block width in the Reduce function.
This is done by the HadoopHocrAvBlockWidthMapReduce
Taverna component illustrated in Figure 4.

The interoperability between Hadoop jobs is in this example
simply ensured by the first job writing the output HDFS path to
standard out which the second job then takes as the HDFS input
path. The second job only starts after the first job has completely
finished.

Workflow input ports

hadoop_job_name_prefix hdfs_input_dir

hadoop_job_name_prefix | hdfs_input_path

HadoopSequenceFileCreator
STDOUT

Y y
hadoop_job_name _preﬂxl hdfs_input_dir
HadoopHocrAvBlockWidthMapReduce

STDOUT

Y

hdfs_result_file

HadoopFsCat
STDOUT

* Workflow outpjit ports

Figure 2: Taverna workflow modelling a sequence of Hadoop
jobs.

HtmlPathCreator
reading files fram NAS

SequenceFileCreator

!
INASIZ 11958540 9/00000707 Rl
INAS/Z 119585 403/00000708. html
INAS/Z 119585 403/00000709. html Ry
INASEZ 138682341/00000707 html
INAS/Z 138682341/00000708. html
INAS/Z 13868234 1/00000709.html

Z119585409/00000708

INASE 17879 125 7/00000707.himl Z11ZES

INASEZ 178751257/00000708. bl

INASZ 17873 1257/00000709. html A
INASZ367985409/00000707. htm|
INASZ96T9B5409/000007 08 hrml
INASIZI67985409/00000703. him! BRI S BALELLL AL
INASEZ 1965 45405/00000707. htm|
INASEZ 196545409/00000708. htm|
INASEZ 136545409/00000709. html

Z115585405/00000712

997 GB (uncompressed)

Figure 3: SequenceFile creation.

236

Let k; be the identifier of the HTML file (data
type:  org.apache.hadoop.io.Text), and v; be the value
holding the content of the HTML file (data type:
org.apache.hadoop.io.BytesWritable). The key-value pair
(k1 vp) is the input of the Map function shown in equation 1.

map(ky vi) — list(ky vp) (1

As a simple example, let us assume one key-value pair input
with the page identifier 00001.4sml and the HTML file content as
value as shown in example 2.

(00001.html” ” < html > [content] < [html > ") @

The mapper will produce a list of key-value pairs, one key-
value pair for each text block the parser finds, as output. Assum-
ing the parser finds two text blocks with 1200 pixel and 1400 pixel
width, the output list would be as shown in example 3.

((00001.htmI” 1200) (“00001.html” 1400)) 3)

The Mapper outputs a list of key-value pairs /ist(k; v,) with
vy being the text block width value and k; the HTML page key
simply repeated for each value. The value is a string with coordi-
nates, representing width and height of the block element.

For each HTML page k;, the Reduce function aggregates all
text block width values list(v,):

reduce(ky list(vz)) — ky v3 “)

During this step it sums up the [lisr(vy) text block
width values and calculates the average width v3 (data type:
org.apache.hadoop.io.LongWritable).

Related to example 3, this means that the Reduce function
would calculate the average width like shown in example 5.

(”00001.html” (1200 1400)) — ("00001.html” 1300) (5)

Finally, the HadoopF'sCat Taverna component returns part
of the result for demonstrating a successful workflow run.

Combining different types of Hadoop jobs

The example in the previous section introduced the principle
of modelling a data flow, including different Hadoop processing
steps, using the Taverna workbench while data processing and ex-
change is done exclusively in HDFS.

In this section, an extension of this workflow that
reuses the components HadoopSequenceFileCreator and

HadoopAvBlockWidthMapReduce

Map Reduce
2118585408/00000001 2100
2118585409/00000001 2200
Z118585409/00000001 2300
Z118585409/00000001 2400

—

! NI
ye —
2119585408/00000002 2100
N B 1 19585 409/00000002 2250
f EL 10| 2119585408/00000002 2300
—r 2119585408/00000002 2400

2119565408/00000003 2100
» 2113585409/00000003 2200

O e Z118585408/00000003 2300 [~ kit iy
2119585408/00000003 2400
Z119585403/000000042100

Z119585409/00000004 2200
— zn;;l;au!luuuuuuudz:uu} 2119585409/00000004 2250

Z119585409/00000004 2400,

2113585 409/00000001 2250

Z119585403/00000001 .,
[~

Z113585409/00000002 ()

[~
Z119585409/00000003 ¢ 3

[~ ]
Z119585409/00000004 |
—r
2l NI

fi

Z119585409/00000005 2100

Z119585405/00000005 (3 | Z119585409/00000005 2200
=) ; bl UL |z vssasansio0on00s 2250

Z119585409/00000005 2400,

SequenceFile Textfile

Figure 4: Map Reduce job for calculating average block.

© Copyright 2013; Society for Imaging Science and Technology




HadoopHocrAvBlockWidthMapRecude will be shown. The
workflow is illustrated in Figure 5 and includes different types of
Hadoop components in a data flow with two branches, it has:

a Hadoop Streaming API component (Hadoop-
StreamingExiftoolRead) reading image metadata using
Exiftool.

a  Map/Reduce  component (HadoopHocrAvBlock-
WidthMapReduce) calculating the average text block width
per page.

Hive components for creating data tables (HiveLoad*Data)
and performing a test query on the results (HiveSelect).

- Workflow input ports :

html_extension ‘ | hadoop_job_name_prefix H rootpath |A | Jp2_extension |

HtmiPathCreator | | Jp2PathCreator ‘

¥ ~a ¥

(l HadoopSequenceFileCreator || HadoopStreaming ExiftoolRead |

| HadoopHocrAvBlockWidthiMapReduce || HivelLoadExifData |

HiveLoadHocrData

HiveSelect

- Workflow output ports :

ot | ¥ -

Figure 5: Taverna workflow modelling a sequence of Hadoop
jobs.

The workflow has two input ports, the first input port
hadoop_job_name_prefix is an identifier for the Hadoop jobs
started by the workflow. This allows tracking Hadoop job
progress using the HadoopJobTracker. The second input port
root path is a directory root path from where files will be retrieved
recursively. In this demonstration, the Unix tool ’find’ is used to
create a text file containing all file paths with a specific extension
in the corresponding directory. This is done by the component
HtmlPathCreator for retrieving all file paths with HTML exten-
sion and by the component J p2PathCreator for all file paths with
JP2 extension (JPEG2000).

The components HadoopSequenceFileCreator for sequence
file creation and HadoopHocrAvBlockWidthMapRecude for
reading the average text block width per page of the workflow
shown in Figure 2 are reused in the left branch of this workflow.

In the right branch, image metadata from the JPEG2000 im-
age files are read by executing Exiftool using Hadoop’s streaming
API. In this case a bash script is defined as the Mapper and no
Java implementation for the Hadoop job is required.

Both branches of this workflow return a two columns tab
delimited plain text files where the first column is the page iden-
tifier, and the second column is the average text block width for
HadoopHocrAvBlockWidthMapRecude and the image width for
HadoopStreamingExiftoolRead respectively.

These results can then be loaded into a Hive database, the
HiveLoadHocrData component creates a Hive table hocrdata

Archiving 2013 Final Program and Proceedings

DB W N =

with an identifier column hocrdata.id and average text block
width column hocrdata.width. And the HiveLoadExifData
component creates a exifdata table width an identifier column
exifdata.id and an image width column exifdata.width.

The workflow is intended to be a data preparation compo-
nent which makes data available for doing analytic queries using
Hive’s MySQL-like query language. It is now possible to exe-
cute analytic queries in Hive’s SQL-like syntax, the HiveSelect
component executes a simple test query in order to verify if the
result data has been created successfully. It executes a SELECT
query with a JOIN on the two tables created by Hive like shown
in listing 1.

select
hocrdata.id , hocrdata.width ,exifdata .width
from hocrdata
inner join exifdata
on hocrdata.identifier=exifdata.identifier;

Listing 1: SQL Join Query using the two result tables

An example result of this query is shown in table 1 where
the first column is a combined book/page identifier, the second
column the corresponding average text block width (Avg. width)
and the third column the image width (Exif width).

Table 1: Hive select result table

Identifier Avg. width Exif width
00010.html 1041 2210
00011.html 826 2245
00012.html 1122 2266
00013.html 1092 2281
00014.html 1026 2102
00015.html 1046 2217
00016.html 864 2263

Outlook and further work

The institutional scenario outlined in this article focused on
I/O intensive tasks, like reading metadata and parsing plain text
HTML files.

A different challenge is posed by computing intensive qual-
ity assurance components developed in the SCAPE project, like
the one described in [8]. Based on image feature extraction, this
software enables creating modularised workflows for a variety of
digital library data processing scenarios, like image duplicate de-
tection in books or digital book version comparison, for example.
Various processing steps of this software are computing intensive
and data needs to be shared in between. Using of the software
in the context of the distributed data processing platform used in
the SCAPE project will open new requirements to the way how
the software components interact and how data can be shared in a
distributed computing environment.

At the Austrian National Library, the SCAPE platform and
software components will be used in the context of data manage-
ment and quality assurance of the digital book collection. It is
planned to integrate more software tools for data format migra-
tion, file format validation, data analysis, and quality assurance
into this framework to enable the analysis of large digital book
collections combining the library book metadata with the techni-
cal metadata created by workflows described in this article.

237




Related work

A great variety of workflow engines have emerged
around Apache Hadoop in the recent years, like
Apache  Oozie  (http://oozie.apache.org) or  Hamake
(http://code.google.com/p/hamake), just to name two other
Hadoop related workflow engines using an XML-based workflow
description language.

A prominent approach in this field is the work presented
by [9] about Meandre, a component-based framework for data-
intensive computing. While the work presented in this article
was focusing on using Hadoop as an open source solution to the
large scale data processing in the context of a specific use case,
this work describes a generic approach of using an SOA (Service
Oriented Architecture) with a semantic component model used to
model computing and I/O intensive data flows.

Conclusional remarks

The SCAPE project will continue developing scalable ser-
vices for planning and execution of institutional preservation
strategies on an open source platform that orchestrates semi-
automated workflows for large-scale, heterogeneous collections
of complex digital objects. More information is available at:

WWW.scape-project.eu

The principal use of the Taverna Workbench desktop appli-
cation is to design component-based data flows and demonstrate a
workflow run using sample data. Workflows can be shared using
the myExperiment workflow publishing platform [10]. Hadoop
jobs are usually long-running processes, therefore Taverna server
offers a REST API which allows remote execution of workflows.

The Taverna workflows presented in this article are available
on myExperiment:

www.myexperiment.org/workflows/3069

www.myexperiment.org/workflows/3105

The code for the Hadoop jobs employed in the workflows
is available via the artefacts tb-lsdr-seqfilecreator and tb-Isdr-
hocrparser in the openplanets repository on Github:

www.github.com/openplanets/scape

Visit the Github account of the Open Planets Foundation to
get a preview on many of the software components created by the
SCAPE project at:

www.github.com/openplanets

And via the myExperiment SCAPE group you can find Tav-
erna workflows published by the SCAPE project:

www.myexperiment.org/groups/490

Acknowledgments

This work was partially supported by the SCAPE project.
The SCAPE project is co-funded by the European Union under
FP7 ICT-2009.4.1 (Grant Agreement number 270137).

Special thanks go to my former colleague at the Austrian
National Library, Martin Reisacher, who provided the primary
use case for this article which is the detection of cropping errors
causing text loss in the Austrian National Library’s digital books
collection.

238

References

[1] D. Hull, K. Wolstencroft, R. Stevens, C.A. Goble, M.R. Pocock, P.
Li, and T. Oinn, Taverna: a tool for building and running workflows
of services., Nucleic Acids Research, vol. 34, 2006, pp. 729-732.

[2] Andrzej Bialecki, Mike Cafarella, Doug Cutting, Owen O’Malley,
”Hadoop: A Framework for Running Applications on Large Clusters
Built of Commodity Hardware”, 2005, http://hadoop.apache.org/.

[3] Jeffrey Dean, Sanjay Ghemawat, MapReduce: simplified data pro-
cessing on large clusters, 2008, pp. 107-113.

[4] Thomas M. Breuel, "The hOCR Microformat for OCR Workflow and
Results.”, Proc. ICDAR, pg. 1063-1067. (2007).

[S] Tom White, "The Small Files Problem.”, Cloudera blog, 02/02/2009,
Retrieved from http://blog.cloudera.com/blog/2009/02/the-small-
files-problem/.

[6] Tom White, Hadoop - The Definitive Guide: Storage and Analysis at
Internet Scale (3. ed., revised and updated), O’Reilly, 2012, pg. 44.

[7] Jason Venner, Pro Hadoop, 2009, pg. 196.

[8] Reinhold Huber-Mrk, Alexander Schindler, Sven Schlarb, Duplicate
Detection for Quality Assurance of Document Image Collections,
Proc. iPres2012. (2012).

[9] Bernie Acs, Xavier Llora, Loretta Auvil, Boris Capitanu, David
Tcheng, Mike Haberman, Limin Dong, Tim Wentling, Michael
Welge, A general approach to data-intensive computing using the Me-
andre component-based framework. Proc. 1st International Workshop
on Workflow Approaches to New Data-centric Science. (2010).

[10] C. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides,
D. Newman, M. Borkum, S. Bechhofer, M. Roos, P. Li, and D. De
Roure, myExperiment: a repository and social network for the shar-
ing of bioinformatics workflows, Nucleic Acids Research, 2010.

Author Biography

Sven Schlarb , Ph.D., studied Humanities Computer Science at the
University of Cologne. He joined the Austrian National Library in 2008,
participated in the EU funded projects PLANETS and IMPACT, and is
now leading the Testbeds sub-project in SCAPE. Before, he worked as a
web software developer in Cologne, and as software engineer (C++/Java)
and SAP support consultant at SAP in Madrid.

© Copyright 2013; Society for Imaging Science and Technology



	100
	14
	41
	27
	65
	47
	12
	54
	29
	45
	52
	46
	6
	20
	22
	24
	28
	35
	70
	71
	2
	30
	32
	67
	43
	58
	16
	53
	10
	11
	13
	19
	44
	56
	60
	61
	23
	49
	7
	51
	15
	9
	40
	33
	101
	26
	68
	3
	50
	63
	42
	62
	64
	38
	36
	8
	66
	25



