
Intelligent Storage Systems in Digital Preservation
Tom Creighton; Family Search; Orem, UT, United States

Abstract

Great effort has been expended in making digital preservation
repository systems reliable in terms of how they manage the
objects within the repository. For the most part, these systems
place no more demand on the storage system in which they store
their digital objects than any software system places on a POSIX
file system. All issues of integrity maintenance tend to be handled
by the preservation system itself. For example, regular fixity
checks are typically carried out by the preservation system running
through its catalog inventory and reading each file stored in the
storage system in order to compare with a previously calculated
hash value stored in the catalog. This requires the attention of the
preservation system itself in most cases. Large simplification and
performance gains are to be made by delegating more of these
integrity checking and data recovery issues to the storage system.

Introduction
Great effort has been expended in making digital preservation

repository systems reliable in terms of how they manage the
objects within the repository. For the most part, these systems
place no more demand on the storage system in which they store
their digital objects than any software system places on a POSIX
file system. All issues of integrity maintenance tend to be handled
by the preservation system itself. For example, regular fixity
checks are typically carried out by the preservation system running
through its catalog inventory and reading each file stored in the
storage system in order to compare with a previously calculated
hash value stored in the catalog. This requires the attention of the
preservation system itself in most cases. Large simplification and
performance gains are to be made by delegating more of these
integrity checking and data recovery issues to the storage system.

Storage Systems Get Smarter
Modern storage systems go well beyond the relatively simple

redundant array of inexpensive disks (RAID) models that have
served us well for many years. Instead of “striping” data across a
RAID set of four, five or a few more drives, vendors are now
putting data from files that you write into chunks, spread across
many, perhaps 20, drives. This allows much better performance in
most cases just because the load can be spread across so many
more disk drives. But in addition to spreading the load, vendors
such as XIO automatically detect when a disk drive is having
trouble, and will silently remap the data chunks stored on that drive
so that it does not present a risk to data recovery. The disk can then
be automatically re-tuned, or rejected, based on the types of
failures.

Recent studies performed at Carnegie Mellon University
demonstrate a failure rate for all types of disk drives to be at about
52,560 hours MTBF. This is much worse than the industry has
traditionally claimed. But whether it is 52,560 or 600,000, or 1.5
million hours MTBF, if we are charged with maintaining data

integrity for very long periods of time, we must manage those
failure rates via multiple copies. And we need systems that can
detect when errors occur, and correct them.

Newer storage arrays are moving away from traditional RAID
configurations and are using erasure coding methods such as Reed-
Solomon to ensure no data loss. This results in lower overhead for
parity bit maintenance, but also works well with the concept of
spreading data files in chunks over many disk drives. Some storage
systems, such as Dell Compellent, also automatically map storage
chunks to higher performance devices such as SSD, when those
data chunks are requested more often than others. Dell, IBM, HP,
and other vendors also provide systems that “rebuild” failed drives
in the cage.

Implications for Digital Preservation
While it is a great boon to all industries to have intelligent

subsystems perform more services for the application stack that
depends on the data stored in those subsystems, in the case of
digital preservation systems, it's important to have some level of
awareness in the digital preservation management system about
what is happening to the data in the underlying storage system.

For example, suppose an organization uses Fedora as its
digital repository. And for purposes of managing the artifacts in its
care over time, it chooses to make use of cloud storage such as
Amazon's S3 or Glacier. In both of those systems there are
automatic integrity checks made all the time, not just at read time.
Unfortunately there is no way for either S3 or Glacier to inform
Fedora that an integrity check was made on a particular digital
object stored in the system. If the managed storage system detects
an integrity failure, it automatically replaces the object from one of
several replicas. But again, this action, which would typically be
considered a preservation action, cannot be communicated to
Fedora. And so while we might be pleased to have the service that
S3 and Glacier provide, its value is somewhat diminished because
we can't know when the last integrity check was made, or what its
result was.

The Family Search Approach
At Family Search we have determined that our digital

preservation system, which currently contains tens of petabytes of
digital objects, can most cost effectively be maintained on tape.
We currently use LTO-4 tape, but are moving to Oracle's T10000-
C enterprise class storage cartridges. These offer much greater
capacity, better performance, longer life, and very importantly,
provide for end-to-end integrity verification. Such end-to-end
integrity checks can now also be found on disk systems.

In the case of the T10000-C (as well as IBM's Jaguar) drives,
data integrity can be ensured by means of a CRC code added to
each block written to the tape. For example, this means that if a
512-byte block of data is being written, then it is increased by 8
bytes to 520 bytes. The extra 8 bytes contain the CRC code

Archiving 2013 Final Program and Proceedings 155

calculated on the tape drive at the time the block was written. This
approach is based on the ANSI T10 data integrity field (DIF)
standard developed by a storage consortium.

Prior to DIF technology being available, we were forced to
plan to read all files from all cartridges within a period of time, in
order to verify integrity via checksum verification. Our digital
preservation stack (Tessella's SDB) has the ability to go through all
the files of all the AIPs that it manages and request each one to be
read out of preservation store and then calculate the checksum
using one of several hash algorithms such as MD-5 or SHA-1 in
order to verify integrity. Unfortunately, when working with a tape
system, this presents a number of problems.

The first issue is that SDB has no understanding of the
location of a particular file within a tape library, on a cartridge, and
at a particular location of that cartridge. It only really understands
POSIX file system paths. We have created a custom storage system
to fit into SDB's pluggable storage interface that keeps track of file
location based on unique file identifiers that SDB can track as
metadata on the AIP. This storage system consists of a database
catalog of file locations, along with the ability to read any file or
group of files from tape and load them into a convenient disk-
based storage system that can be accessed by either SDB or other
software.

The second issue that we faced is that SDB could not be
expected to request files for validation in an order that would
optimize access from tape. Since tape media are inherently
sequential access, with typically long latency for first byte access,
we could have had a very sub-optimal situation with respect to on-
going fixity checks. Our solution to this is to remove from SDB
responsibility for thorough fixity checking. Instead, only random
fixity checks occur as directed from an operator of SDB. For the
thorough checking, we validate the CRC for each block for each
cartridge in all our libraries. This is much more efficient than
unloading all files from all cartridges and checking fixity. And it is
tremendously better than an approach of requesting all files
without respect to which cartridge they are on.

Another issue is that SDB is written to expect fairly low
latency on any file request. Access to a particular cartridge can
often take several seconds, sometimes even minutes. Because of
this, the software requesting access to a tape-based file might time
out before the operation can complete. To address this, we have
written custom workflow operations using the Drools-based
workflow engine included in SDB. By doing this, we created an
asynchronous interface to the storage system, allowing for
operations to be started, that might take a long time to finish.

Since the tape system itself can check the integrity of each
data block written to a cartridge, without copying the files out to a

disk system, we can perform a level of fixity checking within the
storage system that is neither based on the original hash calculation
made for each file at ingest time, nor dependent solely on
orchestration from the SDB management stack. In other words, we
can create policies that execute entirely within the storage system
that periodically test the integrity of all the data on each cartridge.
And these checks can execute independent from the management
system.

The problem, of course, is that there is then no good way to
report to SDB that an integrity check was performed, and what
files it applied to, and what the results were. Since the storage
system also maintains multiple copies of each artifact, it is capable
of correcting any errors it detects. Again, however, there is no
good way to inform SDB of such action.

Conclusion and Call to Arms
The issues of independent integrity checks, failure recovery,

media integrity management and others, are not necessarily unique
to tape based storage systems. In fact, Amazon's storage models
share all of these characteristics. In the case of Amazon's Glacier,
even the high latency for access is common with tape systems,
whether or not it is based on tape. What is needed in our
preservation industry is a set of clear standards for interfaces
between the preservation management layer and storage systems.
These interfaces need to allow for such things as asynchronous
operation, policy-based actions, storage initiated operations. With
such standard interfaces in place, a sophisticated system such as
iRODS, not to mention the Family Search tape system, could
operate on its policies and report to SDB or Fedora the results of
those operations.

Family Search has barely scratched the surface of interaction
between increasingly intelligent storage systems and the
preservation management software that depends on them. One of
the next areas to explore is how to make use of tape diagnostics
gathered within the storage system that predict cartridge and drive
failures, and communicate that information to the preservation
system so that appropriate action can be initiated and recorded.

Author Biography
N. Thomas Creighton received his BS in Computer Science from

Brigham Young University (1979) and his MS in Computer Science from
University of Southern California (1983). He is currently employed as
CTO of Family Search in Salt Lake City, UT. He is responsible for
development of large web based applications and the preservation of
digital still and moving images as well as large relational databases. He is
a member of ACM, SAA, and IASA.

156 © Copyright 2013; Society for Imaging Science and Technology

	100
	14
	41
	27
	65
	47
	12
	54
	29
	45
	52
	46
	6
	20
	22
	24
	28
	35
	70
	71
	2
	30
	32
	67
	43
	58
	16
	53
	10
	11
	13
	19
	44
	56
	60
	61
	23
	49
	7
	51
	15
	9
	40
	33
	101
	26
	68
	3
	50
	63
	42
	62
	64
	38
	36
	8
	66
	25

