
Intelligent Storage Systems in Digital Preservation 
Tom Creighton; Family Search; Orem, UT, United States 

 
Abstract 

Great effort has been expended in making digital preservation 
repository systems reliable in terms of how they manage the 
objects within the repository. For the most part, these systems 
place no more demand on the storage system in which they store 
their digital objects than any software system places on a POSIX 
file system. All issues of integrity maintenance tend to be handled 
by the preservation system itself. For example, regular fixity 
checks are typically carried out by the preservation system running 
through its catalog inventory and reading each file stored in the 
storage system in order to compare with a previously calculated 
hash value stored in the catalog. This requires the attention of the 
preservation system itself in most cases. Large simplification and 
performance gains are to be made by delegating more of these 
integrity checking and data recovery issues to the storage system. 

Introduction 
Great effort has been expended in making digital preservation 

repository systems reliable in terms of how they manage the 
objects within the repository. For the most part, these systems 
place no more demand on the storage system in which they store 
their digital objects than any software system places on a POSIX 
file system. All issues of integrity maintenance tend to be handled 
by the preservation system itself. For example, regular fixity 
checks are typically carried out by the preservation system running 
through its catalog inventory and reading each file stored in the 
storage system in order to compare with a previously calculated 
hash value stored in the catalog. This requires the attention of the 
preservation system itself in most cases. Large simplification and 
performance gains are to be made by delegating more of these 
integrity checking and data recovery issues to the storage system. 

Storage Systems Get Smarter 
Modern storage systems go well beyond the relatively simple 

redundant array of inexpensive disks (RAID) models that have 
served us well for many years. Instead of “striping” data across a 
RAID set of four, five or a few more drives, vendors are now 
putting data from files that you write into chunks, spread across 
many, perhaps 20, drives. This allows much better performance in 
most cases just because the load can be spread across so many 
more disk drives. But in addition to spreading the load, vendors 
such as XIO automatically detect when a disk drive is having 
trouble, and will silently remap the data chunks stored on that drive 
so that it does not present a risk to data recovery. The disk can then 
be automatically re-tuned, or rejected, based on the types of 
failures. 

Recent studies performed at Carnegie Mellon University 
demonstrate a failure rate for all types of disk drives to be at about 
52,560 hours MTBF. This is much worse than the industry has 
traditionally claimed. But whether it is 52,560 or 600,000, or 1.5 
million hours MTBF, if we are charged with maintaining data 

integrity for very long periods of time, we must manage those 
failure rates via multiple copies. And we need systems that can 
detect when errors occur, and correct them. 

Newer storage arrays are moving away from traditional RAID 
configurations and are using erasure coding methods such as Reed-
Solomon to ensure no data loss. This results in lower overhead for 
parity bit maintenance, but also works well with the concept of 
spreading data files in chunks over many disk drives. Some storage 
systems, such as Dell Compellent, also automatically map storage 
chunks to higher performance devices such as SSD, when those 
data chunks are requested more often than others. Dell, IBM, HP, 
and other vendors also provide systems that “rebuild” failed drives 
in the cage. 

Implications for Digital Preservation 
While it is a great boon to all industries to have intelligent 

subsystems perform more services for the application stack that 
depends on the data stored in those subsystems, in the case of 
digital preservation systems, it's important to have some level of 
awareness in the digital preservation management system about 
what is happening to the data in the underlying storage system. 

For example, suppose an organization uses Fedora as its 
digital repository. And for purposes of managing the artifacts in its 
care over time, it chooses to make use of cloud storage such as 
Amazon's S3 or Glacier. In both of those systems there are 
automatic integrity checks made all the time, not just at read time. 
Unfortunately there is no way for either S3 or Glacier to inform 
Fedora that an integrity check was made on a particular digital 
object stored in the system. If the managed storage system detects 
an integrity failure, it automatically replaces the object from one of 
several replicas. But again, this action, which would typically be 
considered a preservation action, cannot be communicated to 
Fedora. And so while we might be pleased to have the service that 
S3 and Glacier provide, its value is somewhat diminished because 
we can't know when the last integrity check was made, or what its 
result was. 

The Family Search Approach 
At Family Search we have determined that our digital 

preservation system, which currently contains tens of petabytes of 
digital objects, can most cost effectively be maintained on tape. 
We currently use LTO-4 tape, but are moving to Oracle's T10000-
C enterprise class storage cartridges. These offer much greater 
capacity, better performance, longer life, and very importantly, 
provide for end-to-end integrity verification. Such end-to-end 
integrity checks can now also be found on disk systems. 

In the case of the T10000-C (as well as IBM's Jaguar) drives, 
data integrity can be ensured by means of a CRC code added to 
each block written to the tape. For example, this means that if a 
512-byte block of data is being written, then it is increased by 8 
bytes to 520 bytes. The extra 8 bytes contain the CRC code 
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calculated on the tape drive at the time the block was written. This 
approach is based on the ANSI T10 data integrity field (DIF) 
standard developed by a storage consortium. 

Prior to DIF technology being available, we were forced to 
plan to read all files from all cartridges within a period of time, in 
order to verify integrity via checksum verification. Our digital 
preservation stack (Tessella's SDB) has the ability to go through all 
the files of all the AIPs that it manages and request each one to be 
read out of preservation store and then calculate the checksum 
using one of several hash algorithms such as MD-5 or SHA-1 in 
order to verify integrity. Unfortunately, when working with a tape 
system, this presents a number of problems. 

The first issue is that SDB has no understanding of the 
location of a particular file within a tape library, on a cartridge, and 
at a particular location of that cartridge. It only really understands 
POSIX file system paths. We have created a custom storage system 
to fit into SDB's pluggable storage interface that keeps track of file 
location based on unique file identifiers that SDB can track as 
metadata on the AIP. This storage system consists of a database 
catalog of file locations, along with the ability to read any file or 
group of files from tape and load them into a convenient disk-
based storage system that can be accessed by either SDB or other 
software. 

The second issue that we faced is that SDB could not be 
expected to request files for validation in an order that would 
optimize access from tape. Since tape media are inherently 
sequential access, with typically long latency for first byte access, 
we could have had a very sub-optimal situation with respect to on-
going fixity checks. Our solution to this is to remove from SDB 
responsibility for thorough fixity checking. Instead, only random 
fixity checks occur as directed from an operator of SDB. For the 
thorough checking, we validate the CRC for each block for each 
cartridge in all our libraries. This is much more efficient than 
unloading all files from all cartridges and checking fixity. And it is 
tremendously better than an approach of requesting all files 
without respect to which cartridge they are on. 

Another issue is that SDB is written to expect fairly low 
latency on any file request. Access to a particular cartridge can 
often take several seconds, sometimes even minutes.  Because of 
this, the software requesting access to a tape-based file might time 
out before the operation can complete.  To address this, we have 
written custom workflow operations using the Drools-based 
workflow engine included in SDB. By doing this, we created an 
asynchronous interface to the storage system, allowing for 
operations to be started, that might take a long time to finish. 

Since the tape system itself can check the integrity of each 
data block written to a cartridge, without copying the files out to a 

disk system, we can perform a level of fixity checking within the 
storage system that is neither based on the original hash calculation 
made for each file at ingest time, nor dependent solely on 
orchestration from the SDB management stack. In other words, we 
can create policies that execute entirely within the storage system 
that periodically test the integrity of all the data on each cartridge. 
And these checks can execute independent from the management 
system. 

The problem, of course, is that there is then no good way to 
report to SDB that an integrity check was performed, and what 
files it applied to, and what the results were. Since the storage 
system also maintains multiple copies of each artifact, it is capable 
of correcting any errors it detects. Again, however, there is no 
good way to inform SDB of such action. 

Conclusion and Call to Arms 
The issues of independent integrity checks, failure recovery, 

media integrity management and others, are not necessarily unique 
to tape based storage systems. In fact, Amazon's storage models 
share all of these characteristics. In the case of Amazon's Glacier, 
even the high latency for access is common with tape systems, 
whether or not it is based on tape. What is needed in our 
preservation industry is a set of clear standards for interfaces 
between the preservation management layer and storage systems. 
These interfaces need to allow for such things as asynchronous 
operation, policy-based actions, storage initiated operations. With 
such standard interfaces in place, a sophisticated system such as 
iRODS, not to mention the Family Search tape system, could 
operate on its policies and report to SDB or Fedora the results of 
those operations. 

Family Search has barely scratched the surface of interaction 
between increasingly intelligent storage systems and the 
preservation management software that depends on them. One of 
the next areas to explore is how to make use of tape diagnostics 
gathered within the storage system that predict cartridge and drive 
failures, and communicate that information to the preservation 
system so that appropriate action can be initiated and recorded.  
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