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Abstract 
In this paper we present the results of a study on the effects of 

JPEG 2000 compression and file format configuration on image 
quality. This study was conducted as part of an institutional 
reassessment of still image file format choices for master image 
files, and parallels other institutional efforts to evaluate JPEG 
2000 image compression. This work extends the thinking on this 
topic by focusing on identifying visually lossless compression for 
different collections types, by relating subjective assessment to 
objective or metrics-based analyses of image quality, and by 
evaluating the effect of JPEG 2000 file configuration on image 
quality. Additional work was done to evaluate the effect of scanner 
sampling efficiency on lossy image compression, and an 
assessment of traditional JPEG compression was done for 
comparison. 

1. Introduction  
JPEG (Joint Photographic Experts Group) 2000 [1, 2] is the 

latest image compression standard developed by the International 
Standard Organization (ISO) and International 
Telecommunications Union (ITU-T), which complements the 
current JPEG standard with improved compression performance 
and new features such as scalability and editability. For example, 
JPEG 2000 provides both lossless and lossy compression in a 
single code stream, which can be transmitted progressively by 
resolution, quality, component, or location; JPEG 2000 allows 
random code-stream access and processing, i.e., the code streams 
offer several mechanisms to support spatial random access or 
region of interest access at varying degrees of granularity. In 
particular, Part 1 of the standard, ISO/IEC 15444-1, is the Core 
Coding System containing the features that all decoders must 
support, in order to be called JPEG 2000 compliant.  

Figure 1 shows the main function diagram of JPEG 2000 
algorithm. The preprocessing block consists of three steps: tiling, 
DC level shifting, and color components transformation. Tiling 
partitions the input image into rectangular, nonoverlapping tiles of 
equal size (except edges). Color components of each tile can then 
be transformed from the RGB space to YCbCr (irreversible 
transformation) or modified YUV (reversible transformation) 

spaces. If the pixel values are unsigned integers and represented by 
B bits, an offset of -2B-1 is added to convert the intensity values to 
a range of [-2B-1,  2B-1]. The second block implements wavelet 
transform using either the CDF 9/7 wavelets (irreversible) or CDF 
5/3 wavelets (reversible) on the intensity values. The 
Normalization/Quantization block maps the wavelet coefficients to 
integers for bit-by-bit encoding. The greater the quantization step 
size, the greater is the compression and the loss of quality. The last 
block of the encoder implements entropy coding, Embedded Block 
Coding with Optimal Truncation (EBCOT), which separates the 
coefficients into bit-planes and encodes each plane in three passes: 
significance propagation, magnitude refinement, and cleanup 
passes. Each of these coding passes collects contextual information 
about the bit-plane data. Such information along with the bit-
planes is used by the arithmetic encoder (MQ-coder) to generate 
the compressed bit-stream. At last, four types of progression (for 
transmission), i.e., layer, resolution, spatial position, and 
component, can be achieved by appropriate order of the packets 
(spatially consistent code blocks) in the code stream. The decoder 
functions are the inverse of the corresponding encoder blocks.  

This paper is organized as follows: Section 2 introduces our 
experiment plan. Section 3 presents the experimental results, 
including both subjective assessments and objective measurements 
of the JPEG 2000 compression effects. We summarize our 
observations and draw conclusions in Section 4. 

2. The Study Plan 
The goal of our study was to evaluate the compression effects 

of JPEG 2000 on image quality, and to develop guidance and 
recommendations for compression for different collection content 
to achieve the “visually lossless” quality. For example, with the 
identification of the “visually lossless” compression by domain 
experts, we may use JPEG 2000 to replace the commonly used 
TIFF to save the storage cost in archiving applications, and still 
preserve the “same” visual quality as in TIFF format. To 
implement the above goal, we conduct four phases of analysis in 
our compression experiments: 
1. Analysis based on image content, mode, size, and resolution 
2. Analysis based on imaging sampling efficiency 

 

 

 
 
 
 
 
Figure 1. JPEG 2000 function diagram 
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3. Analysis based on JPEG 2000 parameter settings 
4. Comparison with the standard JPEG compression 

 

  

   

   
Figure 2. Representative image samples of different content, mode and size 
in our collection. From left to right and from top to bottom: color photo, graphic 
illustration, monochrome drawing, color drawing, copyright card, gray photo, 
printed text, and map.  

The first analysis was our main focus, in which we selected a 
representative sample of different content types, including printed 
text, photographs, graphic illustrations, maps, drawings, and 
documents with handwriting, as shown in Figure 2. Samples of 
different contents, modes (gray, monochrome, and color), size, and 
resolutions (300 and 400 dpi) are included in our collection, with 
the objective to investigate the effects of these factors on image 
compression. Digital images from different scanners were used for 
the initial phase of the study, and JPEG 2000 derivative images 
were produced using a sequence of 15 compression ratios applied 
to each image starting from lossless compression and progressing 
to 1024:1. Only the compression ratio was changed for this set of 
compressed images, all other JPEG 2000 configuration parameters 
(e.g., progression order, number of quality layers, number of 
decomposition levels, and tile size) were kept the same.  

In response to the results of the first analysis, the second 
phase of the study used test images produced by image processing 
tools that simulate different scanner sampling efficiencies and 
followed the same protocol as the first phase. The third phase of 
the study focused on the effect of JPEG 2000 configuration 
parameters on image quality, by using the same set of sample 
images to generate additional derivatives under different 
configuration parameters for the JPEG 2000 files. Finally, a fourth 
phase was conducted to evaluate traditional JPEG compression 
(discrete cosine transform) for comparison purposes. 

To evaluate the compression effects on image quality, we 
compared the compressed images with the original uncompressed 
images using both qualitative and quantitative measurement 
methods. For the qualitative or subjective assessment, observers 
reviewed the compressed images on the same workstation and 
were asked to identify the lowest compression ratio at which 
“artifacts” were visible. The average compression ratio identified 
for the group of observers and the ratio identified by the most 
critical observer (calculated as the 90th psercentile) can be used to 
determine a “visually lossless” level for different content types. 
For the quantitative measurements, we calculated mean square 
error (MSE), peak signal noise ratio (PSNR), ΔE 2000 (for color 
images) [3], and structural similarity (SSIM) [4], using the original 
images as the reference. By mapping the subjective assessment to 
the objective measurements, we may estimate the compression 
ratio corresponding to the “visually lossless” level based on the 
objective error measurements. However, with only a single value 
calculated, these metrics cannot provide a detailed characterization 
of the compression effects. To address this issue, we propose a 
more general metric based on the error (difference) distribution 
with respect to the image intensity and gradient. These 
distribution-based measurements provide more comprehensive 
information about the compression effects on image quality. 

3. Experiments 

3.1 Visually Lossless Compression Identification 
In the first phase of our study, a set of 42 samples of different 

content types, size, and modes were collected, e.g., 7 gray photos, 
10 cartoon drawings (monochrome, gray, and color), 7 color 
photos, 4 graphic illustrations, 14 cards (copyright and musical 
cards). For each sample, a sequence of 15 compression ratios are 
applied to produce the compressed images, i.e., lossless, 8:1, 12:1, 
16:1, 20:1, 24:1, 32:1, 40:1, 60:1, 80:1, 108:1, 168:1, 336:1, 600:1, 
and 1024:1. Specifically, there were two sets of musical cards 
collected at 300 and 400 dpi, respectively, with each set consisting 
of 5 samples. All the compressed images were named sequentially 
and uploaded to a computer for visual inspection. We recruited six 
domain experts to determine visually the lowest compression level 
at which they first observed compression artifacts, e.g., edge 
ringing and background smoothing; all evaluations were done on 
the same computer and monitor, in a darkened viewing 
environment. Meanwhile, objective error measurements (MSE, 
PSNR, and SSIM) were computed for the different compression 
ratios. Figure 3 shows the error curves of five representative 
samples at different compression ratios. As expected, the larger the 
compression ratio, the higher the error values. In addition to the 
commonly used single value metrics (MSE, PSNR, ΔE 2000, and 
SSIM), we also propose a new distribution-based measurement for 
more comprehensive and accurate error characterization. We 
illustrate the error (e.g., MSE) with respect to the image intensity 
and gradient, which show the distribution of error at different 
brightness and image features (edges). Besides these commonly 
used generic metrics, other more advanced image quality metrics 
[6, 7] specifically designed for JPEG 2000 may also be adopted for 
this measurement. Figure 4 shows the corresponding MSE curves 
for a grayscale photo sample, together with the intensity and 
gradient magnitude histograms. It can be seen that the intensity 
error is inverse to the number of pixels at that intensity level, 
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which is also true for all other samples in our experiments. Table 1 
lists the subjective assessment of “visually lossless” compression 
ratios on five representative samples. Lastly, in order to show the 
compression effects on the pixel values, we calculated and plotted 
ΔE 2000 curves with respect to the compression ratios on a color 
photo sample, as shown in Figure 5.  

 

 
Figure 3. Objective error measurements on five samples.  

 

 
Figure 4. Error (MSE) distribution with respective to intensity and gradient.  

  
Figure 5. Percentage of points with error smaller than the thresholds.  

With the above results, we summarize our observations as 
follows: 
• Image size is not necessarily related to the objective error 

measurements. However, some people identified the artifacts 
earlier on smaller size images, i.e., at lower compression 
levels on smaller size images. This may be due to the 
software used to view the images, which by default zooms 
large images to fill the screen, i.e., the noticeability of 
compression artifacts is reduced due to resizing to fit large 
images on the monitor.  

• Color images usually have smaller error variation across 
different compression ratios than other contents. Compared 
with grayscale photos, generally observers identified artifacts 
at higher compression ratios on color images, i.e., it is more 
difficult to identify the compression artifacts in color photo. 

• Image content affects human visual perception on artifact 
identification. With the objective error measurements, on 
average color photos usually have less error than musical 
cards (text), whose error is less than those of gray photos and 
copyright cards (text). The color/monochrome cartoon 
prints/drawings usually had the highest error. The subjective 
assessments also follow such pattern, see Figure 3 for an 
example. 

• From the curves of the objective error with respect to the 
image intensity and gradient, we observed no specific 
correlation between the error and the intensity levels. On the 
other hand, large error appears at high gradient magnitudes, 
i.e., image edges/textures usually have larger error than 
smooth regions, see the rapid error increasing shown in 
Figure 4, especially at high compression ratios. 

• Even minimally lossy compression (e.g., 8:1) introduces error 
(ΔE curves in Figure 5) to most pixels (e.g., 60%). For Just 
Noticeable Difference, ΔE = 1, our minimum lossy 
compression resulted in errors for 10% - 80% pixels for 
different image content types. The effects on different 

Table 1: JPEG 2000 subjective assessment of “lossless compression” (# of people) 
Samples Average 

ratios 
8:1 12:1 16:1 20:1 24:1 32:1 40:1 60:1 80:1 108:1 168:1 336:1 600:1 1024:1 

300dpi card 32  1  1   4        
400dpi card 41  1 1    1 3       
Gray photo 20 1  2  2 1         

Drawing 11 2 3 1            
Color photo 71     2    2 2     
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categories are different, e.g., color images have many fewer 
pixels affected than those in fine prints and glass negatives, 
which are less than those in cartoon drawings. 

• In practice, ΔE = 5 is used to distinguish one color from the 
next in standard images [4]. Except for the cartoon drawings, 
all image categories had a high tolerance to moderate 
compressions (e.g., up to 16:1 in our experiment), with more 
than 90% pixels having a ΔE < 5. 

• Lossless compression (about 2:1) has no effect on objective 
measurements. 

• Higher resolution (e.g., 400ppi) images always have smaller 
error at different compression ratios, thus people usually 
identify the artifacts at lower compression ratios on low 
resolution (e.g., 300ppi) images than those of high resolution 
images. 

 
With our observations, we recommend the ratios for “visually 

lossless” compression for different image content types. Here we 
show two sets of ratios based on the average and 90th percentile 
ratings of the domain experts, as shown in Table 2. 

 
Table 2: Recommended ratios for “visually lossless” compression 
 Mean 90th percentile 
Grayscale photo 21 8 
Color photo 46 12 
Drawings 20 8 
Graphics 42 12 
Cards 41 16 

3.2 Imaging Sampling Efficiency Effects 
This experiment analyzes the effects imaging sampling 

efficiency on JPEG 2000 compression. We scanned 14 samples of 
different content types at 300dpi and 400dpi, respectively. For 
each resolution setting, we produced images at three different 
sampling efficiencies for both grayscale and color modes using 
image processing: 62%, 85%, and 105% for 300dpi set; and 65%, 
85%, 101% for 400dpi set. Again, for each sample collected with a 
particular sampling efficiency, we compress it with the same 15 
ratios as in the first analysis. Thus in total we have 14 × 2 (mode) 
× 2 (resolution) × 3 (efficiency) = 168 sets of images.  

The same analysis process as in our first study was applied to 
the above image sets, i.e., we collect both human subjective 
assessment for “visually lossless” compression ratio identification 
and objective error measurements at different ratios. Here are our 
observations based on the results: 
• On average, higher sampling efficiency leads to larger 

objective error, thus people identify compression artifacts at 
lower compression level.  

• Other observations regarding image size, content, mode, and 
resolution are the same as our previous study, e.g., image size 
is not related to the visual assessment and objective error 
measurements; with smaller error, it is more difficult to 
identify the compression artifacts for higher resolution 
images; color images usually have smaller error than gray 
photos with the same compression ratios, thus people 
generally identify the artifacts at lower compression levels on 
grayscale images; human visual perception also depends on 
image content, as in the first analysis; objective error 

measurement is independent to the image intensity, and 
increases as the image gradient does; small compression 
introduces error to most pixels, but the compression error is 
small even under a high compression ratio, e.g., 20:1. 
 
We propose “visually lossless” compression ratios with 

respect to different sampling efficiencies. For high (101% and 
105%), middle (85%), and low (62% and 65%) sampling 
efficiencies, we list the average and 90th percentile expert ratings 
in Table 3, 4 and 5 that are organized by different categories 
(content type, information type, and scanning resolution). 

 
Table 3: Recommended ratios for “visually lossless” compression with 
respect to the sampling efficiency and content type 

Content 
Type Encoding Samp Eff  Mean 

90th 
Percen StDev 

Book Color 1.01 to 1.05 46 18 53 
0.85 44 20 31 

0.62 to 0.65 55 24 29 
Grayscale 1.01 to 1.05 25 10 29 

0.85 25 10 22 
0.62 to 0.65 32 12 29 

Graphic 
Illustration 

Color 1.01 to 1.05 41 12 41 
0.85 47 12 59 

0.62 to 0.65 70 16 108 
Grayscale 1.01 to 1.05 34 8 57 

0.85 32 8 35 
0.62 to 0.65 37 12 54 

Index Card Color 1.01 to 1.05 41 21 17 
0.85 41 21 17 

0.62 to 0.65 45 20 18 
Grayscale 1.01 to 1.05 21 16 6 

0.85 23 16 6 
0.62 to 0.65 28 16 13 

Map Color 1.01 to 1.05 28 13 18 
0.85 36 12 43 

0.62 to 0.65 46 13 43 
Grayscale 1.01 to 1.05 18 8 20 

0.85 19 8 12 
0.62 to 0.65 25 8 22 

Photo Color 1.01 to 1.05 42 16 46 
0.85 41 16 44 

0.62 to 0.65 48 16 44 
Grayscale 1.01 to 1.05 33 12 46 

0.85 32 12 29 
0.62 to 0.65 43 16 57 

 
Table 4: Recommended ratios for “visually lossless” compression with 
respect to the sampling efficiency and information type 

Info Type Encoding Samp Eff  Mean 
90th 

Percen StDev 

Continuous 
Tone 

Color 1.01 to 1.05 32 16 18 
0.85 32 14 17 

0.62 to 0.65 39 16 20 
Grayscale 1.01 to 1.05 23 12 13 

0.85 24 12 11 
0.62 to 0.65 32 14 14 

Continuous 
Tone Color 

Color 1.01 to 1.05 57 16 68 
0.85 55 16 64 

0.62 to 0.65 62 16 63 
Grayscale 1.01 to 1.05 49 13 69 

0.85 45 17 41 
0.62 to 0.65 59 18 86 
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Line 

Color 1.01 to 1.05 38 12 34 
0.85 34 13 29 

0.62 to 0.65 47 17 45 
Grayscale 1.01 to 1.05 25 8 30 

0.85 28 8 32 
0.62 to 0.65 26 12 19 

Line, 
Shading, 
and Color 

Color 1.01 to 1.05 38 12 38 
0.85 48 12 62 

0.62 to 0.65 69 14 108 
Grayscale 1.01 to 1.05 32 8 56 

0.85 29 8 31 
0.62 to 0.65 36 10 55 

Text 

Color 1.01 to 1.05 47 20 47 
0.85 45 23 27 

0.62 to 0.65 53 23 25 
Grayscale 1.01 to 1.05 25 12 24 

0.85 26 12 19 
0.62 to 0.65 32 16 25 

Text, with 
Halftone 

Color 1.01 to 1.05 30 17 12 
0.85 33 16 19 

0.62 to 0.65 44 24 26 
Grayscale 1.01 to 1.05 19 8 14 

0.85 19 8 11 
0.62 to 0.65 23 12 15 

 
 
Table 5: Recommended ratios for “visually lossless” compression with 
respect to the sampling efficiency and scanning resolution 

Scanning 
Resolution Encoding Samp Eff  Mean 

90th 
Percentile StDev 

300ppi Color 1.05 38 16 28 
0.85 46 16 53 
0.62 48 16 40 

Grayscale 1.05 23 9 22 
0.85 29 8 25 
0.62 33 12 37 

400ppi Color 1.01 45 16 53 
0.85 39 16 27 
0.65 59 17 74 

Grayscale 1.01 35 8 53 
0.85 28 12 28 
0.65 39 13 51 

 

3.3 JPEG 2000 Configuration Parameter Effects 
This experiment tested the effects of JPEG 2000 parameter 

settings on the compression performance. We used the MatlabTM 
imwrite function to set the parameters. We chose 12 samples from 
each category of grayscale photo, color photo (color and 
monochrome), hand drawing (color and monochrome), and 
copyright cards. Configuration parameters include 
CompressionRatio, ProgressionOrder ('LRCP', 'RLCP', 'RPCL', 
'PCRL' or 'CPRL'),  QualityLayers (max 20, default 1), 
ReductionLevels (i.e., decomposition levels, max 8), and TileSize 

(mininum [128 128], default image size). 
To test the effect of a particular parameter, we fixed the 

compression ratio at different levels and changed the settings of 
that parameter. We chose three compression ratios of 8:1, 40:1, 
and 600:1. Table 6 shows the MSE measurements for one color 
photo sample. The progression order determines the priority of 
coefficients (layer, resolution, component or position) in 
transmission and reconstruction, thus it does not change the 
objective error measurements. The order selection is application-
specific. The parameter of quality layers indicates the truncated 
bitrate for each pixel. In most samples, different layers produce the 
same or very close results with similar objective measurements, 
especially at low compression ratios. At high compression ratios, a 
small number of layers (e.g., 5) is better than a larger number (e.g., 
10 or 20) based on the objective error measure. Given a fixed 
compression ratio, the resulting image size is fixed. Therefore, 
more quality layers require more bits to be assigned to the layer 
headers, which result in more truncation on bits assigned to real 
data. On the other hand, more quality layers provide flexibility in 
delivering image regions of different quality to the applications. 
Reduction level specifies the decomposition level to conduct the 
discrete wavelet transform. At low compression ratios, different 
reduction levels also produce very close results. However, for most 
image samples with high compression ratios, a small reduction 
level (e.g., 2) has worse error measure than that of a high reduction 
level (e.g., 4 and 8). This is because different frequency 
components of the signal become well separated at high 
decomposition levels, which enables less detail (high frequency 
contents) loss in reconstruction. Lastly, the tile size parameter 
indicates the number of blocks to divide the original image. For all 
our samples, small tile size (128 × 128) results in larger error. 
When the size is large enough, e.g., 4096 × 4096 in our test, the 
results are the same as the original image size (i.e., no tiles). The 
more tiles (blocks) used, bit-errors will be restricted to individual 
blocks, which prevents error propagation in transmission. 
Moreover, small tiles are useful for reducing local memory 
buffering requirements to implement the wavelet transform, which 
is important for inexpensive hardware applications such as digital 
cameras. However, a large number of tiles usually introduces 
block effect with larger compression error. Smaller tiles also 
reduce the number of decomposition levels in the transform and 
this forces smaller code blocks to be used in the subbands that are 
smaller than the desired code block size (64 × 64). 

3.4 JPEG 2000 vs. JPEG 
This experiment showed the superiority of JPEG 2000 over 

standard JPEG. We choose six samples from the first analysis and 
used Adobe PhotoshopTM to produce JPG files (by changing the 
quality and blur parameters) with similar size to the compressed 
JP2 files. We repeated the subjective analysis and computed the 

Table 6: JPEG 2000 configuration parameter settings of a color photo example (MSE)  
Compression 

ratio 
Progression order Quality layers Reduction levels Tile size 

 LRCP, RLCP, RPCL, PCRL, CPRL 5 10 20 2 4 8 128 512 1024 4096 

8:1 1.26 1.27 1.27 1.27 1.24 1.22 1.27 1.51 1.27 1.27 1.24 
40:1 2.87 2.88 2.88 2.88 3.36 2.84 2.89 3.41 2.91 2.89 2.87 

600:1 14.36 14.50 14.56 14.61 199.91 17.37 14.39 81.75 16.77 15.10 14.42 
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objective measurements for these JPG files. As expected, people 
identified compression artifacts at lower compression ratios than 
those of JPEG 2000. Meanwhile, the objective error measurements 
of JPG files are larger than the corresponding JP2 files, i.e., those 
with similar image size. 

4. Conclusion 
We analyzed JPEG 2000 compression effects on image 

quality, with both subjective assessments and objective error 
measurements. We implemented four phases of study to analyze 
the effects of different factors in the compression, including image 
content, size, resolution, mode, sampling efficiency, and the JPEG 
2000 configuration parameters (i.e., progression order, quality 
layers, reduction levels, and tile size). With these preliminary 
studies, we summarize our observations and recommend 
compression ratios for “visually lossless” compression based on 
collection content and sampling efficiency. For future work, we 
will recruit more imaging experts to assist with work on 
identifying “visually lossless” compression ratios in an automated 
manner; it is critical to construct a statistically valid model relating 
subjective assessment to objective error measurements. Thus we 
can automate image quality assessment, i.e., calculating an image 
error measurement and creating a predictive model for whether a 
level of lossy compression is acceptable or not. 
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