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Abstract 

In this paper we present methodologies for using automated 
image analysis to determine levels of information content for 
photographic collections and a corresponding spatial resolution 
for digitization. The approach described is an extension of work in 
the paper “Establishing Spatial Resolution Requirements for 
Digitizing Transmissive Content: A Use Case Approach” 
presented at Archiving 2011. 

1. Introduction  
Image sharpness is an important factor of image quality, 

which is also an indicator of image resolution. A variety of 
sharpness measurements have been proposed, including both 
subjective [1] and objective metrics [2, 3, 4, 5, 6], among which 
modulation transfer function (MTF) [2, 3] or spatial frequency 
response (SFR) are the most commonly used. MTF is defined as 
the modulation ratio of the output image and the ideal image, and 
SFR is a measurement of the effective system MTF relative to the 
test object feature used [8] There are usually two ways to measure 
the MTF and SFR: using sine pattern bar images of different 
spatial frequencies; and using target board with slanted edges, (an 
example of GoldenThread Target1 is shown in Figure 1). In 
practice, the second method is easier to implement, which 
computes SFR as the magnitude of the Fourier transform of the 
point (or line) spread function that is approximated by an idealized 
edge in the target image. Based on the MTF/SFR computation, 
Burns and Williams [7] proposed a measurement, sampling 
efficiency, to summarily communicate true optical resolution to 
the theoretical maximum as a ratio of the former to the latter. 

Currently, sampling efficiency calculation is embedded in 
commercial software DICETM, which requires user interaction to 
select the regions of interest (ROI), i.e., regions with clear edges 
and low noise, for SFR and sampling efficiency computation. This 
process can be used to determine an appropriate scanning 
resolution to capture information content. Unfortunately even for 
experts it is very hard to identify all the features in a photographic 
image that are suitable for analysis, resulting in large intra- and 
inter-observer variations. In addition, the time cost to analyze high 
resolution digital images for large photo collections is very high, 
making manual analysis an impractical option. In order to 
overcome these problems, we developed an automated image 
analysis approach to derive an appropriate spatial or scanning 
resolution from image statistics, which provides consistent, 

                                                                 
 
 
1 Image Science Associates. http://www.imagescienceassociates.com/ 

accurate and fast analysis. With predefined constraints on edges 
(e.g., contrast, orientation, and homogeneity) and SFR (e.g., curve 
shape and magnitude), our method identifies all the valid image 
edges, based on which we compute the SFR and sampling 
efficiency for each edge. With the center limit theorem, we obtain 
the final optimal scanning resolution based on the maximum 
sampling efficiency of each image sample.    

 

 
Figure 1. Example of slanted edges for MTF computation. 

This paper is organized as follows: Section 2 briefly 
introduces image quality and sharpness background. Section 3 
presents the proposed image analysis approach for automatic 
spatial resolution determination. Experiment results and statistical 
analysis on five sets of samples are presented in Section 4. We 
draw conclusions in Section 5. 

2. Background 
Image quality is usually assessed by a variety of factors, such 

as sharpness, noise, dynamic range, color accuracy, distortion, and 
etc. Image sharpness is obtained by image sharpening techniques 
that enhance the contrast among subjects in order to convey more 
details. Image sharpening is usually implemented through image 
edge enhancement, such as filtering techniques using unsharp 
masks [8] and anisotropic image diffusion [9]. 

As introduced above, the most commonly used image 
sharpness measurement is through the SFR [2, 3]. Given square 
wave grating of different frequencies f (measured by the number of 
lines/mm), modulation is defined as 

Modulation = (Imax – Imin) / (Imax + Imin) (1) 
 
where Imax and Imin are the maximum and minimum intensity 
measured in the image. The MTF is then defined as a function of 
the frequency, which is the modulation ratio of the output image 
and the input (ideal) image at certain frequency. Thus the value 
range of SFR is from 0 to 1, and the value monotonically decreases 
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as the frequency increases. However, with image enhancement 
techniques, images may be oversharpened. This could produce 
higher SFR values at high frequencies, which corresponds to the 
phenomenon of "halos" at edges. While the square wave grating-
based method requires measurements of modulations for different 
spatial frequencies of the sine pattern bars, a simpler and more 
commonly used way to derive the SFR employs images with edge 
gradient analysis using slanted edges, see Figure 1. Given an 
image edge, an edge spread function (ESF) is first obtained as the 
profile across it (i.e., a plot of the pixel values). A line spread 
function (LSF) is then computed as the derivative of the ESF. 
Finally, the SFR is the Fourier transform of the LSF. An image 
edge should be a step function but will inevitably not be in 
practice. Therefore, slanted image edges are usually used in order 
to produce more samples on the ESF profile for more accurate 
LTF computation. This is implemented by projecting all points on 
multiple lines crossing the edge to one line, which produces sub-
pixel resolution on the profile. Using such oversampled ESF, we 
can obtain more accurate results on the LSF and thus the SFR 
values. Many target boards produced by different companies are 
currently used for the SFR estimation. In this paper, we use this 
second method to compute the SFR and the sampling efficiency.   

Besides the SFR, other commonly seen image sharpness 
measurements include subjective quality factor (SQF) [1] and 
acutance [10]. SQF is a subjective metric, which is dependent on 
SFR, print or display height, viewing distance, and human eye’s 
contrast sensitivity function (CSF) [11]. Acutance describes image 
edge contrast, which is usually sensitive to image noise. Recently, 

more advanced human visual system (HVS)-based metrics have 
been proposed to characterize image sharpness like human visual 
perception. For example, the concept of just noticeable blur (JNB) 
is integrated into a probability summation model in [4], which 
employs the fact that HVS masks blurriness around an edge up to a 
certain threshold. Thus the JNB is determined as a function of the 
local contrast and is used to derive an edge-based sharpness metric 
that makes use of probability summation over space. This metric is 
also able to predict image blurriness with different contents. In [5], 
a local feature is constructed as the ratio of high and low band 
spatial frequencies in a small neighborhood. Thus adaptive image 
sharpening can be implemented that enhances image contents 
based on their sharpness measurement. In [6], a no-reference 
image sharpness measure is constructed based on the local phase 
coherence (LPC) in the wavelet domain, i.e., the phase of the 
complex wavelet coefficients at image edges shows a consistent 
relationship across different scales. The proposed metric has a 
broad application in distortions caused by compression, filtering 
and noise contamination. Last but not least, the interested reader is 
referred to [4] for an overview of no-reference image sharpness 
metrics.   

3. Scanning Resolution Determination  
This section presents our approach to determine the level of 

information content for photographic collections, specifically 
B+W photographic negatives, and a corresponding spatial 
resolution for digitization through image analysis techniques. A 
flowchart of our algorithm is shown in Figure 2, which consists of 

 

 
 
Figure 2. Automatic SFR analysis algorithm flowchart 
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main functions of valid edge detection, SFR and sampling 
efficiency computation, and scanning resolution determination.  

The images in our collection are generally scanned under a 
controlled environment with large image size (e.g., 9000 × 7000), 
which may introduce problems such as nonuniform illumination 
and exposure. In addition, scanning noise and artifacts also vary 
across the images. Thus the traditional global approach for feature 
(edge) detection cannot produce accurate results. In our model, we 
use a sliding window to “scan” the high resolution digital images 
of photographs in a block-by-block manner (e.g., block size 1000 
× 1000). We skip smooth blocks for high speed processing. For a 
non-smooth block, straight edges are identified by Canny edge 
detector and Hough transform. Gaussian smoothing is employed in 
this step to overcome the noise effect. We also choose the 
minimum gap among edges and the minimum length of an edge. 
For each detected edge, a small rectangle region (with aspect ratio 
½) surrounding the edge is constructed to determine the edge 
validity. Certain constraints are set in this step for accurate results:  
• Angle constraint: each edge should be slanted, e.g., at least 3º 

in horizontal or vertical direction.  
• Rectangle region constraint: an upright edge should always 

touch the top and bottom rectangle borders; a flat edge should 
always touch the left and right rectangle borders. 

• Intensity contrast constraint: the intensity at the two sides of 
the edge should be significantly different, e.g., at least 20% 
difference between the average values. 

• Region homogeneity constraint: the two sub-regions at the 
two sides of the edge should be smooth, e.g., their standard 
deviation should be less than 40% of that of the whole image. 

• Region homogeneity similarity constraint: the two sub-
regions at the two sides of the edge should have similar 
homogeneity, e.g., at most 10% difference of their standard 
deviations. 

• Region overlapping constraint: there should be no large 
overlap between two neighboring rectangles, e.g., at most 
50% overlapping. 
 
After valid edge identification, we compute the MTF/SFR 

following ISO 12233. The derived SFR curves are analyzed to 
further remove invalid candidates. We set the following constraints 
to identify the final valid edges for image scanning resolution 
determination: 
• The SFR at high frequencies (e.g., above the Nyquist 

frequency) should be smaller than those of low frequencies, 
e.g., the mean value of the second half SFR should be smaller 
than that of the first half SFR. 

• The SFR should be monotonically decreasing with the 
increased frequency, i.e., the SFR value at frequency zero 
should be the largest and the normalized SFR should have the 
maximum value 1 at frequency zero. Considering the noise 
effect in practice, we allow variations of the SFR, and we 
restrict the maximum SFR to be 1.1 at low frequencies. In 
addition, we restrict that the maximum SFR value at high 
frequencies is smaller than the 50% of the maximum SFR 
value of low frequencies. 
 
With these constraints, we identify valid edges in each image 

for the scanning resolution determination. For each valid edge SFR 
curve, the sampling efficiency [7] can be computed as the ratio of 

frequencies at the 10% and 50% (i.e., at Nyquist frequency) SFR 
values, respectively. In our collection, the sampling efficiency 
distribution usually does not fit a normal distribution, thus we 
resort to the central limit theorem to fit a Gaussian distribution for 
the mean of maximum SFR values of the samples. We present the 
statistical analysis of the results in Section 4.  

4. Experiments 
In our experiments, we tested our approach on seven sets of 

photographic negatives and targets scanned using a variety of 
scanners with different settings:  
• Set #1: FSA safety film negatives — 30 samples scanned on 

Kodak Eversmart Select at 5000 ppi. 
• Set #2: FSA nitrate film negatives — 31 negatives scanned on 

DT/Leaf Aptus with different resolutions, including 16 
negatives of 3"×4" and 4"×5" scanned at 1917 ppi, 7 
negatives of 3"×4" scanned at 2377 ppi, and 8 negatives of 
2.25"×2.25" scanned at 2481 ppi. 

• Set #3: 5 negatives scanned on DT/Leaf Aptus at 1900 ppi 
and on Kodak Eversmart Select scanner at 3000 ppi. 

• Set #4: 4 preservation microfilm targets scanned on Kodak 
Eversmart Select scanner at 5000 ppi. 

• Set #5: 4 preservation microfilm targets scanned on Kodak 
Eversmart Select scanner at 5000 ppi, with all sharpening and 
smoothing switches being turned off. 

• Set #6: 5 preservation microfilm targets scanned on Kodak 
Eversmart Select scanner at 5000 ppi, with all sharpening and 
smoothing switches being turned off. 

• Set #7: FSA nitrate film negatives — 86 negatives scanned on 
DT/Leaf Aptus at 1900 ppi. 
 
Using Set #7 as an example, Figure 3, 4, and 5 show 

examples of the detected valid edges on one image, the edge 
regions, and the corresponding SFR curves. We also show the 
histogram of sampling efficiencies of all the 86 images, see Figure 
6. There are 767 valid edges for this sample set, and there are no 
valid edges found on 7 samples. It can be seen that this histogram 
is skewed and cannot be fit well by Gaussian model. Therefore, 
with the central limit theorem, we derive the distribution of the 
average maximum sampling efficiency as a Gaussian model. The 
mean of the maximum sampling efficiency is 45.1013 and the 
standard deviation is 15.2564. Thus the mean and standard 
deviation of the mean sampling efficiency distribution is 45.1013 
and 15.2564/sqrt(86-7) = 1.7165, respectively. We apply the three-
sigma rule of the normal distribution to estimate the optimal 
scanning resolution, i.e., 1900*(45.1013+3*1.7165) ≈ 955 ppi. 
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Figure 3. An example of the detected valid edges on an image from Set #7. 

 

 
Figure 4. Sample edge regions from the Figure 3 edges. 

 

 
Figure 5. Sample SFR curves from the Figure 3 edges. 

 
Figure 6. The histogram of the sampling efficiencies of Set #7. 

In the end, we conducted experiments to verify that our 
method measures the informational content of the photographic 
film, which should not be affected by our scanner resolution 
settings. We scanned a selected set of negatives (five 35mm films) 
using a comparable scanner (Kodak iQsmart3) using three 
different resolutions, i.e., 2000, 3000 and 4000 ppi. We then 
repeated our experiment to derive the average maximum scanning 
resolution on these three settings. Due to the small number of 
samples, we did not apply the three-sigma rule here to compute the 
optimal scanning resolution. Instead, we considered only the mean 
of the maximum scanning resolutions, which are very close 
(1635ppi for the set scanned at 3000ppi and 1590ppi for the 
4000ppi set), which verifies that our method is independent of the 
scanner’s settings. Note the estimated resolution for the 2000ppi 
set is 860ppi, which is different from the other two sets. We 
believe this is caused by the low sampling efficiency of the 
scanner at this spatial resolution setting, i.e., the measured 
resolution of the scanner is too low and very close to the frequency 
of the informational content of these sample photographic 
negatives.  

5. Conclusion 
We propose an automated approach for determining spatial 

resolution for digitization through image and statistical analysis 
techniques. Our approach searches all valid edges meeting the 
predefined constraints in a given image, based on which the SFR 
and sampling efficiencies are computed for all the edges. We 
repeat the process for all samples in our collections, representative 
of the age, quality, and variations of the original photography, and 
apply the central limit theorem to derive the optimal spatial 
resolution for digitizing each sample set. Experimental results 
show that our approach is robust and can achieve accurate 
performance. For future work, we will further investigate the 
robustness and accuracy of our method on more comprehensive 
collections with larger sample sets.   
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