

Preserving Digital Documents for
the Long-Term

Raymond A. Lorie
IBM Almaden Research Center

San Jose, California, USA

Abstract

As more and more documents are created and archived
digitally, their preservation is becoming critical. A digital
document is a sequence of bits that needs to be interpreted
and the interpretation process must be archived with the
document. The process may be simple or very complex, and
various methods have been proposed, depending upon the
required functionality.

The paper reviews the most popular methods, with
particular emphasis on the use of a ”Universal Virtual
Machine” (or UVC).1,2 The UVC method consists of
archiving with the data a program P that dynamically
converts the internal format into an easily readable structure
which identifies the various elements (much like XML does)
down to a point where it becomes much easier to define the
rest of the interpretation process. In the future, an interpreter
of the UVC program will enable the execution of P on any
computer. The focus of the paper is primarily on archiving
printable documents which require both content and
presentation to be preserved; a short section will briefly
cover more general documents.

The paper makes reference to an existing prototype and
how it was used in some proof of concept projects.

Introduction

The problem of archiving digital information for the long-
term is receiving increasing attention. The technical
challenge is twofold. First, the bits must be preserved.
Second, the future client must be able to interpret the bits
and build a modern viewer or any application that needs to
access the data.

The sub-problem that preserves the bits for the long-
term presents interesting challenges but they are not
insurmountable. The business-as-usual solution consisting of
copying the information periodically from one
medium/device combination to another one, works. It
faithfully preserves the bits and always takes advantage of
the latest storage technology. This is important since it
reduces the requirement for shelf space and real estate.

On the other hand, preserving the interpretation of the
bits is a different story. Let us consider three cases:

Case 1: On the Side of Simplicity
Consider a black and white image stored as an

uncompressed bit map. In addition to archiving the bits, a
certain amount of metadata is needed to describe how to
interpret them. It contains the identification of the type
(“bitmap”) and two values, height and width. The metadata
associate with “bitmap” would explain in English that the
pixels are stored line by line, starting at the top/left, one bit
per pixel (1 for black), etc. There is no process to be saved;
the future client will be able to write a modern viewer.

Case 2: On the Side of Complexity
Consider an interactive educational CD, and assume that

an archivist wants to be sure that historians will be able to
play the module in fifty years from now. The CD file(s) can
be stored as a binary file, and, in order to preserve the
program functionality, the metadata must include enough
information to re-enact the behavior of the 2003 computer in
the future. This can hardly be described in English; so the
best bet is to include in the metadata a platform independent
version of an emulator of the 2003 computer (plus a user’s
guide for the program). Building an emulator is hard, even
more so if timings must be handled accurately.

Case 3: Preserving a Printable Document
On the complexity scale, the case falls between the two

extreme cases 1 and 2. It is more complex than case 1
because the data structure is much more complex, and
because a certain process, tightly bound to the data must be
applied to the data to make it meaningful. That process is
much too difficult to explain in English and suggests the use
of a program. For preservation, such a program needs to be
specified in a way that will ensure its longevity across
multiple changes in machine architecture and software.

Preservation Methods

This paper focuses on archiving printable documents,
preserving their content and presentation. The most
important approaches are now summarized.

Conversion
It is the most obvious, business-as-usual, method. When

a new system is installed, it coexists with the old one for
some time, and all files are copied from one system to the

IS&T's 2004 Archiving Conference

88

other. If some file formats are not supported by the new
system, the files are converted to new formats and
applications are changed accordingly. However, for long-
term preservation of rarely accessed documents, conversion
becomes an unnecessary burden; it is also prone to errors.
Program conversion may be reasonable in some cases but
data conversion is generally not.

Emulation
In Ref. [3], Jeff Rothenberg proposes to save, together

with the data, the program that was used to create/manipulate
the information in the first place. Then, the only way to
decode the bit stream is to run that old program; this always
requires an interpreter of the real machine. References [3]
and [4] suggest different methods for defining how an
interpreter can be specified; but the feasibility of these
methods has not been proven. The emulation approach
suffers from two other drawbacks.
1. Saving the original program is justifiable for re-enacting

the behavior of a program, but it is overkill for data
archiving. In order to archive data created online, it is
hardly necessary to be able to re-enact the behavior of a
full interactive system.

2. The original program generally shows the data (and
more often, results derived from the data) in one
particular output form. The program does not make the
data accessible; it is therefore impossible to export the
original data from the old system to the new one.

10011100101...

data

UVC Interpreter

execution Restore
application.

today in the future...

UVC program

archive

data

logical view

 UVC
program
 P

doc

bit stream

P

Figure 1. The UVC preservation mechanism

Reliance on a Virtual Machine
A few definitions are in order:
- internal format: it is the way the information is stored in

the original bit stream representing the document.
- logical view: it is the set of logical data elements (and

the connections between them) that are contained in the
internal format (or obtained by computation),
individually isolated and tagged with a semantic tag
(very much like XML).

- derived internal format: it is another internal format
which preserves all the essential information of the
original document. The essential information means
anything that has a value for the archivist. In some cases

it may be the ASCII text of a document; in other cases, it
may be the full behavior of a program.

Today, an application program generates a data file,

which is archived for the future (see Fig. 1). In order for the
file to be understood in the future, a program P is also
archived, that can decode the internal format and present the
data to the client in a logical view, much easier to
understand. To avoid the obsolescence problem, that
program P is written for a UVC machine.

In the future, a restore application program reads the bit
stream and passes P to a UVC interpreter, which executes it.
During the execution, the data is decoded and returned,
element by element, according to the logical view. Note that
the logical view is chosen at the time the UVC program is
written. The program extracts the various data elements and
labels them with the appropriate tags. Nothing impedes the
UVC program to perform other operations, in addition to the
extraction of data elements, and even inserting the results in
the logical view. The logical view is XML-like because it
returns tag-element pairs organized hierarchically like XML,
but results of simple API invocations and not as a character
string that must be parsed. It is worth reiterating that the
logical view is generated at access time, by the UVC
program, from the internal format stored in the archive.

In order to understand the data, the future client must
know the schema. The definition of the schema is just
another set of data. The schema is also archived with the file,
together with a UVC program that decodes it and returns its
data elements according to a "schema to read schemas". That
schema is fixed; its predefined structure and tags are part of
the UVC Convention,2 which must be universally known,
now and in the future. The Convention does not need to be
stored with each object but needs to be replicated in many
places so that it remains accessible by anybody, anywhere
and at any time.

A short parenthesis on the UVC: the specification of the
UVC is summarized in Ref. [2]. Its architecture has been
influenced by the fact that the machine does not need to be
implemented physically. Therefore, there is no actual
physical cost. For example, the UVC can have a large
number of registers; each register has a variable number of
bits plus a sign bit; the memory is unlimited in size,
segmented, bit-oriented. The UVC has a small set of
instructions, thus reducing the amount of work involved in
developing an interpreter of the UVC instructions on a future
real machine. An initial design of the UVC exists, with a
corresponding interpreter. As mentioned later in this paper,
two proofs of concept have been conducted.

 Preserving Content and Presentation

This section focuses on printable documents (case 3), and
considers various strategies.

Using Metadata
If the format is simple enough, all pertinent information

can be described as an unstructured English text or as some

IS&T's 2004 Archiving Conference

89

easy to understand XML structure. A black and white image
stored as a simple bitmap could be archived this way. The
metadata would specify the width and height of the image in
pixels, and explain that a bitmap is stored 8 pixels to a byte,
by row, top to bottom, left to right, that bytes are padded at
the end of a line, etc. The information must be complete so
that a viewer can be written at any time.

Converting Once to XML
XML is often seen as a solution to the long-term

preservation problem. This comes from the fact that an XML
structure is much more understandable than any other
representation. Actually, many document formats can already
be converted to an XML representation (for example, the MS
Office formats). However, an XML document must be
accompanied by a fair amount of metadata describing what
the tags mean and what kind of process is needed to convert
the stored data into a meaningful visual output. If the process
is complex, it cannot be described as an English text; it will
instead require a program specification. Consider an Excel
spreadsheet. The derived XML file contains the coordinates
of each cell and the text that it contains. The text in a cell
may be divided in various sections depending on typesetting
attributes such as font, size, thickness, etc. This does not say
how the text is split in multiple lines or where the individual
characters are positioned on the line, and certainly not the
shape of each character. It is therefore possible to generate an
output that is fairly close to the original, but not to provide
an exact replicate; the method provides a reduced level of
functionality. The level of functionality can be raised by
going one step down in the XML description. Instead of
providing coordinates at the cell level, the description may
include coordinates for every character, and the shape of
every character may be represented as a small bit map. What
is archived is then a “frozen” but faithful representation.

Archiving the Original Format of the Document
Although XML may play an important role in

preservation, it is not a complete solution. In many cases, it
may yield an easily understandable logical view but may be
inappropriate as a storage format. And, it cannot be used to
specify a process. This is where the UVC comes in., as
illustrated in the following two example.

JPEG

Suppose you need to archive a JPEG image. We could
argue that the format is so widespread that programs to
decode it will always be available. But, again, this may not
be the case; and anyway, there are hundreds of image
formats that are in need of preservation support; we just use
JPEG as an example.5

Here, it makes no sense to convert the image to an XML
that is simple to decode since the main advantage of JPEG is
precisely its complex encoding used for compression. The
ideal is to store the JPEG representation but “see” an XML
representation when retrieved from the archive. This is
exactly what the UVC technique accomplishes. It consists of
archiving the JPEG bit stream, accompanied by a UVC

program to decode the JPEG internal structure and produce
dynamically, on demand, a logical view. This view may be a
simple hierarchy of tagged data elements: the number of
lines N, the width in pixels W, a sequence of N lines where
each line is a sequence of 24 bits words.

In the future, a Restore program will read the different
data elements with their tags and do with them whatever is
necessary; in particular, it can recreate the picture in an
obvious way.

The method offers complete flexibility on the choice of
the logical schema that would be the most appropriate.
Actually, there is in general no reason why several different
schemas would be needed for the same logical document
type (here, “picture”). For presentation, a TIFF5 image could
be logically described with the same logical view. The big
advantage is that a single program can be used later to view
the image, independently of its original format

PDF

The method shown for an image can be generalized for
documents with content and preservation. Consider the case
of a PDF document.6 PDF is increasingly seen as a candidate
for a standard to support preservation of printable material.
PDF captures well all aspects of the presentation, but
documents are generally created and updated outside of the
PDF world and then converted into PDF. Although it is hard
to prove that the result of such a conversion is always
faithful, the disparities are few. Thus, the PDF version, if
verified by the producer, could be declared to be the original.
(PDF as a commercial product poses some problems; they
are addressed in the current work on a standard version
called PDF/A.) The problem of preserving PDF (or PDF/A)
is therefore of great interest.

One possible strategy is to follow a method similar to
the one proposed for JPEG: keeping the original PDF file as
the archive, and rely on a UVC program P, associated with
the PDF type, to decode the format and produce a logical
XML-like view form which can be easily understood
(assuming of course that the needed metadata exists). Two
options are possible. The first one is to freeze the
presentation as done for the Excel example above. The
second option is to capitalize on the fact that the UVC can
describe any process. So, even the process that generates the
shape of the characters dynamically, based on some input
parameters, can be used. Of course, the writing of the UVC
program becomes more difficult, but may be developed by
simply compiling some of the original code of any system
that renders PDF in all its details.

Using a Derived Internal Format
Archiving the data in its original format is certainly a

good strategy. There are cases, however, where this strategy
may be impracticable. An alternative is to convert a
document from its original format F into a derived format F’
at archival time. Then, the new format may be less optimized
for a particular capability (such a generating the bitmap for
printing) but more extensible to support other functions.

IS&T's 2004 Archiving Conference

90

In order to build the derived format, the information
from the original format must first be extracted; this may still
require full knowledge of the original format. But it is often
possible to simplify the task by using accessibility tools that
exist today and may not be available in the future. In a joint
project between IBM Research and the Koninklijke
Bibliotheek in The Hague, Netherlands,7 such a method was
used to implement a preservation method for PDF
documents. It starts by generating a file containing the full
image of the page (using Ghostscript8), extracting the
descriptive fields from the PDF file itself, and getting the
text, its attributes and the bookmarks, element by element,
from an HTML equivalent (produced by a tool from BCL9).
The HTML file provides a tagged element for every piece of
homogeneous text (same font, size, emphasis, etc) with its
precise location. The information is all compressed in a
single bit stream, and a UVC program was developed to
decode it.

There is no need here to describe the internal format in
details. Actually, the advantage of using the UVC is that the
details will never be seen by a client; they are fully handled
by the UVC program. What is important is that the logical
view that is produced be easy to explain. It should contain
only data at a logical level, independent of the
implementation. The ideal, for example, would be to have
the same logical view for any printable document. As we
mentioned earlier, this is easy to do for images; it may be
somewhat harder but feasible for more complex documents.

In our PDF experiment, we still keep the page image in
JPEG. Since both the coordinates and the page image come
from the same PDF rendering, they are fully compatible and
a viewer can exploit that correlation. For example, it can
perform a text search on a given keyword and highlight its
occurrence(s) on the displayed page. But keeping page
images is costly in storage; they should be compressed in a
lossless manner. One solution is to keep the images included
in the document in their original format (JPEG, TIFF, GIF,
to name a few), and compress the text in a more efficient
way, using techniques such as those employed in JBIG210).

Beyond Presentation

This paper focused mainly on the preservation of information
that can be printed or displayed. The section on the PDF
experiment mentions only briefly the fact that bookmarks
were also archived. A bookmark is an example of
information that is not really part of the printed output but
should be archived nonetheless. The current trend is clearly
towards digital documents containing more and more of such
“hidden” but essential information.

Process Unrelated to Presentation
A spreadsheet application often uses formulas to

compute certain cell values. In some cases, only the results
are of interest and the printed table contains all essential
information. Other authors may want to keep the semantic
information that formulas convey, but only as textual
comments. (This is the method that was adopted in a proof

of concept conducted in the Netherlands on the archiving of
spread sheets.) This is still a very static view of formulas. If
the responsible archivist believes that the capability of being
able to evaluate the formulas in the future is essential, the
problem changes drastically. First, the computation process
must be archived; second, the presentation must be re-
evaluated since the length of the data elements may change
the column widths and/or number of lines. Only a
preservation method that preserves processes can do the job.

Marked-Up Documents
Finally, consider documents that are marked up, using a

language such as SGML, XML, or HTML, for example.
SGML and XML separate the logical mark-up of the
information from its presentation. HTML mixes both types
of information in the same language. For XML and SGML, a
style sheet must be supplied to specify the presentation.
While XML and SGML have been or are the subject of
intense standardization efforts, style sheets are more complex
and less standardized. Since the mark-up provides semantic
information, it cannot be replaced by presentation; it must be
archived in any case. As far as presentation is concerned,
archiving the style sheets and the mechanism to apply it to
the text seem to be overkill. Even if the future user should
want to reformat the document, it is very unlikely that he
would be interested in learning the antique style sheet
mechanism and language. Oneapproach is to avoid saving
the style sheet, and to preserve the look of the document as
discussed above for PDF. If this is not adequate, the style
sheet mechanism itself must be defined as a UVC program.

Electronic Publication
Simple publications on CD-Rom’s may be archived

simply by archiving the various documents – including
musical pieces – individually, together with the metadata
stored in the header directory. This is the interface that the
CD-Rom player sees. It will be easy to implement such a
player in the future. But consider now an educational CD-
Rom which contains a complex logic for navigating from
one page to the other, or even a video game which is no data,
only process. In such cases, emulation of the original code
may well be the only solution; it may be a niche but one that
cannot be avoided.

The UVC can play a role here, as well. It provides a way
to write today an emulator of a current machine in a language
that is defined to last “for ever”. The UVC interpreter in the
future will be able to run that interpreter; the future client
will not need to know anything about the original machine.
Emulators have been built successfully in the past but there
were built when both the original and new computers were
available. This is not the case for the long-term. The UVC
approach may be very helpful but the whole approach needs
more research.

Conclusion

The problem of digital preservation for the long-term is very
challenging. There is no single solution to the problem but

IS&T's 2004 Archiving Conference

91

several methods have been proposed, depending upon the
format of the digital file and the type of functionality
required. In some cases, a simple conversion done once at
archival time may be sufficient. In other cases, a UVC
approach allows data to remain in its original form and
simply be converted on demand, at access time, into an easy
to understand logical format. Still, a hybrid approach consists
of converting the original format into an intermediate format
and using a UVC program to decode that format. Finally, a
niche exists for applications that require full emulation.

The definition of printable documents is evolving. The
essential information of a modern document will be the
images and the text in its preferred presentation, but also
additional essential information such as comments,
bookmarks, links, and above all, logical mark-ups. An ideal
archival format would take care of these various types of
information in an integrated manner. The future user should
then be able to access any subset of the information and to
exploit the relationships between the different types of data.
The UVC approach however does not advocate the use of
one or a necessarily small set of formats since the details of
the formats are hidden from the user anyway. Minimizing the
number of internal formats decreases the number of UVC
programs needed; minimizing the number of logical formats
simplifies the task of providing viewers in the future.

References

1. Raymond Lorie, Long-term Preservation of Digital
Information, Joint Conference on Digital Libraries,
ACM/IEEE, Roanoke, VA, 2001.

2. Raymond Lorie, A Methodology and System to Preserve
Digital Data, Joint Conference on Digital Libraries,
ACM/IEEE, Portland, OR, 2002.

3. Jeff Rothenberg, Ensuring the Longevity of Digital
Documents, Scientific American, (272) 1, 1995.

4. Jeff Rothenberg, Avoiding Technological Quicksand: Finding
a Viable Technical Foundation for Digital Preservation, CLIR,
1999.

5. C. W. Brown and B. J. Shepherd: Graphics File Formats,
reference and guide, Manning Publication, 1995.

6. Adobe Systems Incorporated: PDF Reference. Second
Edition, Adobe Portable Document Format, version 1.3,
Addison-Wesley, 2000.

7. Raymond Lorie, The UVC: a Method for Preserving Digital
Documents – Proof of concept, IBM/KB Long-term
Preservation Study, IBM Netherlands, 2002.

8. Ghostscript, Aladdin Enterprises, 2001.
9. BCL Computers, Inc., http://www.gobcl.com.
10. See www.jpeg.org

Biography

Raymond Lorie is a Research Staff Member at IBM
Research. He graduated in 1959 as Ingenieur Electricien-
Mecanicien from the University of Brussels (Belgium),
joined IBM Belgium in 1960, and IBM Research in 1973.
For two decades, he worked on various aspects of the
relational database technology; and was a major contributor
to System R, a precursor of various relational products. Lorie
co-invented the GML mark-up language; he also developed a
general method for exploiting context in OCR systems. His
involvement in digital preservation started in 1995 when he
proposed the UVC preservation method.

Dr. Lorie is an ACM Fellow and co-recipient of the
1988 ACM System Award, for developing the relational
technology.

IS&T's 2004 Archiving Conference

92

	30276
	30277
	30278
	30279
	30280
	30281
	30282
	30283
	30284
	30285
	30286
	30287
	30288
	30289
	30290
	30291
	30292
	30293
	30294
	30295
	30296
	30297
	30298
	30299
	30300
	30301
	30302
	30303
	30304
	30305
	30306
	30307
	30308
	30309
	30310
	30311
	30312
	30313
	30314
	30315
	30316
	30317
	30318
	30319
	30320
	30321
	30322
	30323
	30324
	30325
	30326
	30327
	30328
	30329
	30330
	30331
	30332
	30333
	30334
	30335

