

The History Component of the DSpace
Institutional Repository

Jason Kinner
Hewlett-Packard Company, Princeton, New Jersey, USA

Mick Bass, Hewlett-Packard Company, Loveland, Colorado, USA

Abstract

Systems which provide a basis for digital preservation within
a trusted digital repository must be able to systemically
generate and record information about significant activities
undertaken upon materials under stewardship. This paper
describes the history component of the DSpace™
institutional repository system, which offers an information
model suitable for recording such information, and generates
metadata which describes how the content and metadata
associated with works within the system change over time.

DSpace1,2,3 is an open-source software platform
originally developed by HP Labs and MIT Libraries that
provides the basic functionality required to operate an
institutional digital repository. The system is intended to
serve as a base for future development to address long term
preservation and access issues. An instance of the system has
been deployed in production at MIT Libraries since
November 2002, where it serves as the basis of MIT
Libraries’ digital preservation service offering. DSpace has
included a history component since its deployment at MIT
and release as open-source software. The DSpace history
component has since been extended as part of the SIMILE
Project3,4 to strengthen the underlying information model,
and to include networked access and query capability.

This paper describes the history component of the
DSpace institutional repository system: the motivation for
the history component, the functionality of the history
component; the information model which underpins the
metadata which it generates; architecture and design
tradeoffs encountered during its development; lessons
learned having undertaken the work to date; and areas for
future work.

Motivators for History Metadata, Audit, and
Data Provenance Capabilities

A trusted digital repository is one whose mission is to
provide reliable, long-term access to managed digital
resources to its designated community, now and in the
future.5 One definition of digital preservation is “the
managed activities necessary for ensuring both the long-term
maintenance of a bytestream and continued accessibility of
its contents”.5 Reliable digital repositories manage

preservation activities by following documented policies and
procedures, and enable materials to be disseminated, as
authentic copies of the original or as traceable to the
original.5

An important characteristic of systems which underpin a
trusted digital repository is the capability to generate and
record information about significant activities performed
upon materials within the system. Active curation may entail
transforming works in ways consistent with the preservation
mission of the digital repository, and in support of the needs
of its designated community. Digital preservation activity
often entails creation of a range of artifacts derived in whole
or in part from the original, thus creating networks of related
artifacts. Artifacts in this network may be created directly by
those administering the archive, or by a range of external
services. When information is held digitally and is easily
modified, it is valuable for systems to create sufficient
information to establish this chain of events, and to serve as
a basis for answering questions of data provenance.

Functionality

The history component of DSpace generates metadata which
describes how the content and metadata associated with a
work within the system changes over time.

This metadata enables a range of possible additional
capabilities, from audit of the administration of the archive,
to supporting root-cause analysis of preservation issues, to
supporting human-moderated rollback of materials under
stewardship.

The history component is invoked whenever events of
archival interest occur within the system (for example, when
a community is created, an item’s instance metadata is
edited, or the members of a collection are modified). The
history component produces metadata which models
“snapshots” of the primary information objects within
DSpace (e.g. communities, collections, items, etc.) at various
points in time, as well as the situations and temporal events
that relate these snapshots. Defining which events within the
system are of archival interest is an important curatorial
decision undertaken by institutions offering trusted digital
repository services. The history component is then invoked
whenever these events occur, at which point history metadata
is systematically generated.

IS&T's 2004 Archiving Conference

71

The information in DSpace history snapshots is
recorded using open standards. A key feature of the History
Component is that these changes are noted using the
Resource Description Framework.6 The generated history
snapshots are graph-oriented, and are usable outside the
DSpace system by semi-structured data manipulation toolkits
such as the open-source Jena toolkit7 created by HP Labs’
semantic web research team.8

Information Model

The history component information model comprises
schemas, each specified using the RDF-Schema9 schema
definition language, from three sources: First, the ABC
Ontology from the Harmony International Digital Library
Project10 – intended as a base ontology incorporating a
number of basic entities and relationships common across
other metadata ontologies including time, object
modification, agency, places, concepts, and tangible
objects.11 Second, the Dublin Core Metadata Element Set12 –
which models a useful common set of descriptive and
bibliographic metadata elements. Third, a DSpace Object
Model – which models the content, structure and related
metadata elements of materials within a DSpace system.
Taken together, the history snapshots provide a time-based
record of significant changes to the DSpace corpus.

Figure 1. An example history model

As an example of the operation of the information

model, consider a fictional research paper that is submitted
to DSpace. When the paper is submitted to DSpace, a
Created event occurs with the associated Create action that
indicates what has been created. In particular, the result of
the Create action is a complete Item with associated Bundle
and Bitstream (see Figure 1).

All these created items have associated properties that
are represented in the History System model of the event.
The resting state of the model is that there is an Item,
Bundle, and Bitstream (the result of the Create action) as

well as associated Item, Bundle, and Bitstream revision
instances that represent the current state of the properties of
these created objects. Each of these revision instances are in
the context of the initial check-in Situation. Note that the
revision instances are not related via the hasPart relationship,
as the resources themselves are.

The example so far reveals only a static model. Consider
what would happen to this model if a property of the Item
were to change. The History System represents this change
as additional objects and property values in this model (see
Figure 2). The change requires the Item to have a new
revision instance created (indicated in the figure by the URI,
hdl:1234/123;2) that contains the new value for the Dublin
Core title property. An administrative property, phaseOf,
links this new revision instance back to the root Item
resource.

Figure 2. An additional event in a model

An important advantage of modeling history metadata

using RDF-Schema and RDF is the ability to easily
incorporate into the information model to metadata generated
by downstream services. That is, the events and situations
modeled by DSpace history can easily include information
generated by external services, as well as information
generated by the DSpace system itself. The basic concepts of
events and situations defined by the ABC Ontology provide
the conceptual basis for integration of these separate
information sources, while RDF facilitates merging metadata
from multiple disparate schemas. The distinct modeling of
Dublin Core from the DSpace Object model is an example of
this capability.

Architecture and Design Choices

The DSpace history component comprises:
- the write system, part of DSpace;
- the read system, a stand-alone Joseki instance;
- the Harmony ABC RDF Model; and
- the DSpace Object Model.

IS&T's 2004 Archiving Conference

72

History System Data Integrity
One important design decision is that the History

System need not be up-to-date with the DSpace archive. In
other words, if the History System were to be queried for the
latest information about an object in the most recent
situation, the information returned is allowed to conflict with
the DSpace storage mechanisms that store the up-to-date
state of an object. This design decouples the History System
from the on-line storage supplied by DSpace. Decoupling the
two systems allows the Content Management layer of
DSpace to determine what events are worthwhile to store in
the History System.

Asymmetric Read/Write Interface
The History System provides its services to clients not

through the typical DSpace user interface, but through a
service-oriented API known as Joseki.7

This API allows systems to use RDQL5 to pose queries
against the History System RDF model. This mechanism is
the only way to read the model produced by the History
System and does not provide a way to update the model.

Similarly, the History System API used within DSpace
is the only way to write information to the RDF model.
Using asymmetric interfaces provides a level of protection of
the DSpace data, making it difficult for unauthorized persons
to alter historical data while still opening access to a broad
community who may be interested in accessing this data.

Unified RDF Data Store
Besides simply storing a record of events that involve

DSpace-managed resources, the History System must also be
accessible to systems that want to ask questions about those
events. Before the current work, the RDF models that
represented these changes were scattered across a file
system, making querying a monumental task. By
consolidating these models into a single data store, the
complexity of searching is greatly reduced. A single RDF
persistent model also makes it possible to perform analysis
across different events and objects.

Use of Identification Schemes
The following rules govern the use of various

identification schemes as they are used within the History
System:

URIs

URIs are used throughout the History System and
represent the primary identification mechanism. All other
identification schemes used within the History System will
represent a subset of this scheme. Using URIs as the primary
identification scheme makes it possible to annotate resources
using RDF.

URLs

URLs may be used to refer to digital manifestations of a
resource that are, in fact, accessible via the URL. An
example of this may be a bitstream that represents a
document, image, or other tangible digital resource.

URNs
URNs may be used to refer to a resource that does not

have a digital manifestation or to a resource whose
manifestation is not usable outside of DSpace or the History
System. Examples include using an MD5 or SHA hash
algorithm to generate an identifier for a bitstream that may
not be disseminated by DSpace or an internal identifier that
cannot be interpreted outside of DSpace.

Handles

CNRI Handles8 (Handles) will be used to identify all
resources maintained within DSpace. Using Handles will
allow resources to be uniquely identified locally, within a
DSpace installation, and globally, between DSpace
installations.

Handles have the property that they may be resolved
using a Handle Resolution Service. Although this feature
may be useful in the future, it is not a requirement for the
usage of Handles that the Handle be resolvable. In fact,
Handles may not generally be resolvable due to issues such
as publishing scope and security constraints.

Inferencing Support
Inferencing refers to the resolution of a statement within

the context of a set of constraints on a given model. Within
the History System, these constraints are stated using RDF-
Schema.3 Unlike other schema languages, RDF-Schema
supports only basic statements of inheritance via the
concepts of sub-classes and sub-properties.

The DSpace object classes derive meaning from the
Harmonay ABC base classes. By using this technique and
providing a query system that supports inferencing (Joseki),
DSpace enable clients to form queries using only Harmony
ABC and/or Dublin Core Metadata Element Set syntax.

Use of RDF Types
The History System makes heavy use of the schemas

described above, as well as the schema that describes the
classes and properties required to maintain information
related to DSpace and to the History System (administrative
metadata). The use of RDF types improves the capability of
the system to validate and to infer relationships between
instance statements during queries.

Lessons Learned

The lessons learned during the production of the updated
history component are organized here by functional area.

DSpace History Manager
Extensibility

The present implementation of the History Manager
requires recompilation to introduce new DSpace object
types. Although the DSpace objects used today are
sufficiently general that this should not present a major
problem, the use of custom or fine-grained types may make it
more difficult to produce valid RDF models of these new
objects. Objects that are not subclasses or refinements of

IS&T's 2004 Archiving Conference

73

existing objects are the most difficult case of extensibility to
support. Derivations of existing object types would at least
use the existing serialization mechanisms, which would omit
any extended metadata but would include metadata
associated with the base class type.

Extensibility of a system like the DSpace History
System must be approached from several perspectives,
including the RDF model used to represent the extension, the
RDF schema that defines the type information of the
extension, and the serialization model that maps between
native types and the RDF representation.

Multiple Objects

It may be convenient to include multiple objects in a
single DSpace event, depending on how events are most
appropriately scoped. Consider an event such as “Creation of
a Collection.” This event may comprise more than the simple
creation of a Collection object, and may span such activities
as creating the first item in the collection, assigning metadata
properties to the collection, etc. The current History Manager
API supports the participation of multiple objects in an event
through an extended API that is currently the underlying
implementation of the prior History Manager API. The
extended API allows multiple objects to be enlisted into a
History Context that represents the present Harmony
Situation being modeled.

Event Granularity

The granularity of an event being recorded is extremely
fine in the present DSpace system. Although fine-grained
history is positive from the perspective of capturing a lot of
detail, it is negative because of the event correlation issues in
the Harmony ABC model. From a system design perspective,
it is difficult to predict the possible queries that a user may
make against the History System, but common curatorial
events should be modeled and represented as a single event
(possibly with sub-events) to make these events more visible.

Query
Existential Assertions

Existential assertions, including negative existential
assertions, on an RDF model can be of great practical use.
Consider examining an RDF model for the latest situation
for a given object. Without negative existential assertions, a
query expression cannot be formed to ask, “For a given
object, what is the Existential Actuality in a Situation that
has a preceding Event but has no Event following it?” This
inability to determine the beginnings and ends of chains of
statements makes it difficult to ask other valuable questions,
including schema inheritence questions, which might be
valuable to a requesting client.

Inferencing

Inferencing is an essential tool to providing the
interoperability of semantic data promised by RDF and the
Semantic Web. Dynamic inferencing, in which inferred
statements are considered during query, is far more effective
than storing inferred statements to the model to be queried.

This technique prevents the need to update the statements in
storage for every change in the schema defining the inferred
statements, and it reduces the size of the stored model
significantly. The value to the client is that queries need not
understand the full complexity of inheritance in the RDF-
Schema model in order to extract useful information. By
formulating a query consisting of base classes, relationships
that the client was not initial aware of may be used by the
query engine to produce results that could not have been
anticipated based on the state of the system when the client is
created. This insulation from future change is another benefit
provided by basing the system on RDF and RDF-Schema.

Harmony ABC
Flexibility

Harmony ABC provides a good base model for
representing changes over time. Through the appropriate use
of RDF-Schema, the model can be extending in either
dimension — time or actuality. The flexibility provided by
the model does make it difficult to choose a strategy to
extend the model for a specific application. The History
System did not require any extensions to the base Harmony
ABC model in order to support the basic requirements of
tracking the creation, modification, and deletion of DSpace
items. Harmony ABC chooses to model these event types as
properties of the Event class. Although this mechanism is
consistent, it can cause complexity in the schema by defining
a large number of specialized properties for a given class.

Query Complexity

Because of the separation of events, which model points
in time, and situations, which model the state of one or more
actualities between points in time, the complexity of queries
is higher than in a model that simply represents the state at a
point in time. One benefit of this added complexity is the
opportunity to provide an event correlation model that does
not rely on grouping all state at one point in time or under a
single situation. An event may be introduced into in the
model representing a known event that correlates other sub-
events that occurred during the correlation event.

DSpace Object Model
Extensibility

Extending the DSpace Object Model can be done
through subclassing or through the use of subproperties. This
distinction is vague in RDF due to the rich semantics that
can be applied in either case. Properties should be general
enough that they can apply to multiple classes. It is perfectly
reasonable in an inferencing environment to define a
subclass that also refines the usage of a property defined in
the base class. In this case, the inferred productions from the
schema for the more refined class will include the more
generalized productions that would exist in the base class.
For this reason, care must be taken to match the level of
abstraction between the properties and the classes in which
they are defined. Using a more refined property in a more
abstract class will result in semantic limitations which
impede extensibility.

IS&T's 2004 Archiving Conference

74

Usage of Containers
Models in RDF subscribe generally to one of two

models, known as the hedgehog model and the container
model. For repeating properties (those with more than one
value or with alternative values), the hedgehog model repeats
the property arc for each value or alternative. The container
model encourages the use of a single property arc that refers
to an RDF container construct that contains the values or
alternatives. The advantage to the hedgehog model is that
separate models can be easily combined or compared by
combining or comparing simple statement constructs. Using
the container model requires the set to be navigated, which is
a more complex operation. For the DSpace Object Model,
the hedgehog model is used both for the additional simplicity
in creating the model as well as the simplicity of merging
operations. Whether multiple instances of a property
represent alternatives or mutliple values can be annotated via
the RDF-Schema that defined the DSpace Object Model.

Suitability of RDF

Although RDF was the only model explored during this
project, it proved to be a useful way to produce models of the
changes in the history system. One advantage it has over
other schemes, such as XML, is the ease with which
different subsystems can operate on the same model. A
single model can be generated from the output of several
subsystems, or these subsystems can all add statements to a
common model. In either case, the resulting architecture is
very loosely coupled, requiring only the cooperation of the
subsystem, who writes the statements, and the end client,
who interprets the statements.

These advantages are negatively offset by the lack of
type information in RDF. However, appropriate type
information can be added via the RDF-Schema mechanism,
informing the client of type relationships that may be
required during inferencing operations. This mechanism is
bound to improve as the XML community and the RDF
community continue to work together in order to incorporate
type-correctness into the Semantic Web.

Query Complexity

The intention of the DSpace Object Model is to limit
query complexity to areas such as Harmony in which this
complexity provides distinct advantages. The complexity of
the model can grow, however, depending on how the model
is extended for specific purposes. For example, extending a
class while also refining a property will cause a large number
of inferred statements during queries. Navigating these
inferred queries to find the item that matches the level of
abstraction that the application requires adds complexity to
the query facility.

Usage of Handles

During the design phase of the project, much of the
debate centered on the use of CNRI Handles for identifying
and locating DSpace objects. On one hand, Handles provide
a URI-based abstraction from the physical location of an
object and provide infrastructure for publishing an objects

metadata. On the other hand, use of Handles increases the
overall complexity of the system by adding an additional
resolution protocol and database for dereferencing Handles.
Concerns over the service level implied by handles also
dominated the discussion at times.

Handles are used in the History System in order to allow
the possibility of resolution while allowing a persistent
identifier to be used for historical data. In practice, multiple
identification schemes will most likely apply to an item over
time, and it may be appropriate to separately model these
transitions, perhaps using a model like Harmony ABC. This
technique would allow these identifiers to be correlated, but
some identification scheme that applies to all objects of a
certain type is certainly useful to clients of the History
System data. It remains to be seen if the Handle System adds
value to DSpace or to the History System.

Areas for Future Work

RDF Model Extensions
The RDF model and schema must be implemented in

such a way that extension schemata do not change the scope
or level of abstraction of existing properties. If such a change
in scope is required, a new property should be defined. If this
property is semantically related to the original property, then
the subPropertyOf relationship should be used to indicate
this and to expose the property through the base class
definition via inferencing. There will likely be cases in which
complex data must be stored as property values during
serialization.

The three options presently available include producing
a child RDF instance with a corresponding schema,
producing a pure XML representation that will be parsed by
the RDF engine, or producing an escaped representation
(including XML) that must be parsed by the client. If pure
XML is possible, the second option is recommended. Future
versions of RDF may incorporate the XML-Schema type
facility, making generation and consumption of embedded
XML documents much more straightforward.

Harmony ABC
Event Correlation

The current Harmony ABC event representation reduces
the ability to correlate events that happen at or near the same
time that may be related. It requires explicit event correlation
to occur using the subEventOf relationship and an aggregate
Event. Even this technique does not represent any
relationship between the sub-Events and indicates only a
containment relationship. If ordered or cause-and-effect
correlations are required, the model would need to be
extended to support these.

In the future, it would be appropriate to analyze what
events may need to be correlated in the content management
layer. The Harmony ABC model provides for long-duration
events through the inclusion of a sub-event type. Sub-events
occur in the context of a larger event. All events in Harmony
ABC can span periods of time. This mechanism could be

IS&T's 2004 Archiving Conference

75

used to track changes of objects in a larger context, such as a
data migration project.

Query
Existential Assertions

Although mathematically speaking,2 it is legitimate to
argue that a query mechanism for RDF need not handle the
case of negative existential assertions, many applications do
need to make these assertions. Even relational databases
support the proper syntax to select elements that do not have
a particular relationship to other elements. There is simply no
analogous query in present RDF query facilities.

There are several useful cases in which such an assertion
could be valuable. In the history system, it may be desirable
to formulate a query that would request the end of a chain of
Events and Situations. In order to form this query, though, a
request must be made for an Event that has no preceding
Situation.

Use of Inferencing

The query mechanism must be careful not to inundate
the client with unnecessary inferred statements and to answer
the query precisely.

Bombarding the client with extra statements inherently
limits the scalability of the query mechanism without
providing any value to the client. Specifically, inferred
statements should be used by the query mechanism, but the
statements that actual exist in the model should be included
in the results of the query.

One possible application of negative existential
assertions involves tuning the query engine to trim the set of
result statements after applying inferencing rules. This
technique would make it possible to request the most general
or most specific inferred statement be the result of a given
query by finding either end of the inheritance chain.

Conclusion

The DSpace History System is a simple subsystem that
provides data serialization and event maintenance to DSpace
as well as historical query capbilities to clients of DSpace.
Even though the job performed by the subsystem is simple,
consisting primarily of serializing instances of DSpace object
and connecting them via Harmony ABC, there are many
integration points that needed to be considered when
implementing the system. A prior integration with the
DSpace Content Management system was enhanced to
provide a means to incorporate multiple objects into a single
DSpace event. New and public RDF Schemata were
integrated to improve interoperability with clients that
recognize these schemata. And, an RDF-specific query
mechanism was incorporated to provide remote clients with
an easy way to navigate the data collected by the History
System. The result is a quiet distiller of information that,
hopefully, will grow valuable over time and, because of

heavy use of standards, will continue to be usable well into
the future.

References

1. Tansley, et. al. 2004. The DSpace institutional digital
repository system: current functionality.in Proceedings of the
third ACM/IEEE-CS joint conference on Digital libraries. 87-
97.

2. Tansley, Robert, Mick Bass, MacKenzie Smith: DSpace as an
Open Archival Information System: Current Status and Future
Directions. ECDL 2003. 446-460.

3. Bass, Michael J., et. al. The DSpace™ Institutional
Repository System: Status, Roadmap, Research, Governance,
and Community Building.

4. SIMILE Project. <http://web.mit.edu/simile/www/>.
5. Trusted Digital Repositories: Attributes and Responsibilities.

An RLG-OCLC Report. May 2002. <http://www.rlg.org/
longterm/repositories.pdf>.

6. Resource Description Framework, <http://www.w3.org/
RDF/>.

7. Jena Open-Source Semantic Web Toolkit. <http://jena.
sourceforge.net>.

8. HP Labs Semantic Web Research Activity. <http://
www.hpl.hp.com/semweb/>.

9. RDF Schema. <http://www.w3.org/TR/2004/REC-rdf-
schema-20040210/>

10. The Harmony Project. <http://metadata.net/harmony>.
11. Lagoze, Carl and Jane Hunter, The ABC Ontology and Model.

<http://metadata.net/harmony/JODI_Final.pdf>
12. Dublin Core Metadata Element Set. <http://dublincore.

org/documents/dces/>.

Biographies

Jason Kinner investigates the integration of digital media
systems at Hewlett-Packard Laboratories. He was the
architect and implementer of the current DSpace History
System. Over the past several years, he has participated in
various efforts involving content management, archiving,
and distribution. Jason holds a B.S.E. in Computer Science
and Engineering from the University of Pennsylvania.

Mick Bass manages research in digital media systems at
Hewlett-Packard Laboratories. Mick was the HP project
manager for the HP/MIT DSpace development effort, and
currently leads the SIMILE research project. Prior to
DSpace, he led a team within HP's Enterprise Computing
organization to create and deploy management methods and
supportive software tools to effectively manage large and
complex development efforts. His previous background was
in hardware and software design contributing to HP's
Precision Architecture microprocessors. Mick has fourteen
years experience with HP, holds an MS in Management of
Technology from MIT Sloan, and a BS in Computer
Engineering from the University of Illinois.

IS&T's 2004 Archiving Conference

76

	30276
	30277
	30278
	30279
	30280
	30281
	30282
	30283
	30284
	30285
	30286
	30287
	30288
	30289
	30290
	30291
	30292
	30293
	30294
	30295
	30296
	30297
	30298
	30299
	30300
	30301
	30302
	30303
	30304
	30305
	30306
	30307
	30308
	30309
	30310
	30311
	30312
	30313
	30314
	30315
	30316
	30317
	30318
	30319
	30320
	30321
	30322
	30323
	30324
	30325
	30326
	30327
	30328
	30329
	30330
	30331
	30332
	30333
	30334
	30335

